Non-normal affine monoid algebras

被引:0
|
作者
Lukas Katthän
机构
[1] Universität Osnabrück,FB Mathematik/Informatik
来源
Manuscripta Mathematica | 2015年 / 146卷
关键词
Primary 52B20; Secondary 14M25; 13D45;
D O I
暂无
中图分类号
学科分类号
摘要
We give a geometric description of the set of holes in a non-normal affine monoid Q. The set of holes turns out to be related to the non-trivial graded components of the local cohomology of K[Q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{K}[Q]}$$\end{document}. From this, we see how various properties of K[Q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{K}[Q]}$$\end{document} like local normality and Serre’s conditions (R1) and (S2) are encoded in the geometry of the holes. A combinatorial upper bound for the depth the monoid algebra K[Q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{K}[Q]}$$\end{document} is obtained which in some cases can be used to compute its depth.
引用
收藏
页码:223 / 233
页数:10
相关论文
共 50 条
  • [1] Non-normal affine monoid algebras
    Katthaen, Lukas
    [J]. MANUSCRIPTA MATHEMATICA, 2015, 146 (1-2) : 223 - 233
  • [2] Non-normal elements in Banach *-algebras
    Yood, B
    [J]. STUDIA MATHEMATICA, 2004, 160 (03) : 201 - 204
  • [3] SOME EXAMPLES OF AFFINE MONOID ALGEBRAS
    Krempa, Jan
    Okninski, Jan
    [J]. COMMUNICATIONS IN ALGEBRA, 2012, 40 (01) : 98 - 103
  • [4] On the distribution of prime divisors in class groups of affine monoid algebras
    Fadinger, Victor
    Windisch, Daniel
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2973 - 2982
  • [5] CLASSIFICATION OF NONCOMMUTATIVE MONOID STRUCTURES ON NORMAL AFFINE SURFACES
    Bilich, Boris
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4129 - 4144
  • [6] ON NON-NORMAL NUMBERS
    COLEBROO.CM
    KEMPERMA.JH
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (01): : 1 - &
  • [7] NON-NORMAL NUMBERS
    ODLYZKO, A
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (02): : 141 - 142
  • [8] NON-NORMAL PULSATION
    Yecko, P.
    Pohlmeyer, J.
    [J]. NONLINEAR PULSATIONS AND HYDRODYNAMICS OF CEPHEIDS, 2009, 38 : 25 - 32
  • [9] NON-NORMAL AFFINE MONOIDS, MODULES AND POINCARE SERIES OF PLUMBED 3-MANIFOLDS
    Laszlo, T.
    Szilagyi, Zs.
    [J]. ACTA MATHEMATICA HUNGARICA, 2017, 152 (02) : 421 - 452
  • [10] Non-normal affine monoids, modules and Poincaré series of plumbed 3-manifolds
    T. László
    Zs. Szilágyi
    [J]. Acta Mathematica Hungarica, 2017, 152 : 421 - 452