NON-NORMAL AFFINE MONOIDS, MODULES AND POINCARE SERIES OF PLUMBED 3-MANIFOLDS

被引:3
|
作者
Laszlo, T. [1 ,2 ]
Szilagyi, Zs. [2 ]
机构
[1] Basque Ctr Appl Math, Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
关键词
normal surface singularity; links of singularity; non-normal affine monoid; plumbing graph; rational homology sphere; Poincare series; Seiberg-Witten invariant; polynomial part; SEIBERG-WITTEN INVARIANTS; FLOER HOMOLOGY;
D O I
10.1007/s10474-017-0726-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a non-normal affine monoid together with its modules associated with a negative definite plumbed 3-manifold M. In terms of their structure, we describe the H1(M, Z)-equivariant parts of the topological Poincare series. In particular, we give combinatorial formulas for the Seiberg-Witten invariants of M and for polynomial generalizations defined in [17].
引用
收藏
页码:421 / 452
页数:32
相关论文
共 50 条
  • [1] Non-normal affine monoids, modules and Poincaré series of plumbed 3-manifolds
    T. László
    Zs. Szilágyi
    [J]. Acta Mathematica Hungarica, 2017, 152 : 421 - 452
  • [2] Combinatorial duality for Poincare series, polytopes and invariants of plumbed 3-manifolds
    Laszlo, Tamas
    Nagy, Janos
    Nemethi, Andras
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (02):
  • [3] Contact structures on plumbed 3-manifolds
    Karakurt, Cagri
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2014, 54 (02) : 271 - 294
  • [4] Combinatorial duality for Poincaré series, polytopes and invariants of plumbed 3-manifolds
    Tamás László
    János Nagy
    András Némethi
    [J]. Selecta Mathematica, 2019, 25
  • [5] Plumbing Graphs and Oriented Plumbed 3-Manifolds
    Nemethi, Andras
    Szilard, Agnes
    [J]. MILNOR FIBER BOUNDARY OF A NON-ISOLATED SURFACE SINGULARITY, 2012, 2037 : 25 - 43
  • [6] Refined and Generalized Z Invariants for Plumbed 3-Manifolds
    Ri, Song Jin
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [7] Radiant affine 3-manifolds
    Barbot, T
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (03): : 347 - 389
  • [8] Affine flows on 3-manifolds
    Matsumoto, S
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 162 (771) : VI - +
  • [9] Integral Affine 3-Manifolds
    Kozlov I.K.
    [J]. Journal of Mathematical Sciences, 2021, 259 (5) : 676 - 688
  • [10] Higher depth quantum modular forms and plumbed 3-manifolds
    Bringmann, Kathrin
    Mahlburg, Karl
    Milas, Antun
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (10) : 2675 - 2702