Comment: Fisher lecture: Dimension reduction in regression

被引:9
|
作者
Li, Bing [1 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
关键词
D O I
10.1214/088342307000000069
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:32 / 35
页数:4
相关论文
共 50 条
  • [41] Dimension reduction in functional regression with categorical predictor
    Wang, Guochang
    COMPUTATIONAL STATISTICS, 2017, 32 (02) : 585 - 609
  • [42] Connecting continuum regression with sufficient dimension reduction
    Chen Xin
    Zhu Li-Ping
    STATISTICS & PROBABILITY LETTERS, 2015, 98 : 44 - 49
  • [43] Projection expectile regression for sufficient dimension reduction
    Soale, Abdul-Nasah
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 180
  • [44] Dimension Reduction for Regression with Bottleneck Neural Networks
    Parviainen, Elina
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2010, 2010, 6283 : 37 - 44
  • [45] Dimension reduction for functional regression with a binary response
    Guochang Wang
    Beiting Liang
    Hansheng Wang
    Baoxue Zhang
    Baojian Xie
    Statistical Papers, 2021, 62 : 193 - 208
  • [46] Dimension reduction for functional regression with a binary response
    Wang, Guochang
    Liang, Beiting
    Wang, Hansheng
    Zhang, Baoxue
    Xie, Baojian
    STATISTICAL PAPERS, 2021, 62 (01) : 193 - 208
  • [47] Note on response dimension reduction for multivariate regression
    Yoo, Jae Keun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2019, 26 (05) : 519 - 526
  • [48] AN INTRODUCTION TO DIMENSION REDUCTION IN NONPARAMETRIC KERNEL REGRESSION
    Girard, S.
    Saracco, J.
    STATISTICS FOR ASTROPHYSICS: METHODS AND APPLICATIONS OF THE REGRESSION, 2015, 66 : 167 - +
  • [49] Overlapping sliced inverse regression for dimension reduction
    Zhang, Ning
    Yu, Zhou
    Wu, Qiang
    ANALYSIS AND APPLICATIONS, 2019, 17 (05) : 715 - 736