Transparent, highly stretchable, adhesive, and sensitive ionic conductive hydrogel strain sensor for human motion monitoring

被引:15
|
作者
Ren, Jie [1 ]
Li, Meng [1 ]
Li, Ruirui [1 ]
Wang, Xuemiao [1 ]
Li, Yan [1 ]
Yang, Wu [1 ]
机构
[1] Northwest Normal Univ, Chem & Chem Engn Coll, Key Lab Bioelectrochem & Environm Anal Gansu, Key Lab Polymer Mat,Minist Educ Ecol Environm, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Multifunctional hydrogel; Strain sensor; Motion monitoring; MECHANICAL-PROPERTIES; SKIN; FILMS; PRESSURE; TOUGH;
D O I
10.1016/j.colsurfa.2022.129795
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the flexibility, ductility and tensile properties, hydrogel is considered as promising candidates for the new generation of wearable flexible devices. However, it is still a challenge to endow multiple functions such as excellent conductivity, high stretchability, self-healing, self-adhesion, and biocompatibility in one hydrogel network. Herein, a two-step method was used to prepare multifunctional transparent tannic acid/sodium alginate/polyacrylic acid/carboxymethyl cellulose/aluminum trichloride (SA/TA/PAA/CMC/Al(III)) hydrogels with high stretchability, toughness, adhesion, and conductivity. This hydrogel can adhere to various substrates both organic and inorganic materials. The highest adhesion strength of the hydrogels to the iron sheet reaches 22.33 kPa with the fracture stress being 0.16 MPa and the toughness 1.01 MJ/m(3). Moreover, the hydrogel exhibited repeatable and durable adhesion to human skin and could be peeled off completely without any residual, irritation or allergic reactions. Additionally, the hydrogels also have good repetitive adhesion and strain sensitivity. It was demonstrated that both large-scale and small-scale movements of the human body could be monitored by directly attached to various parts of the human body by the self-adhesion. This work provides a new prospect for the design of the biocompatible hydrogels with transparent, stretchable, self-adhesive, and strain-sensitive properties for potential applications in wearable electronic sensors.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Highly Stretchable and Self-Healing Strain Sensor Based on Gellan Gum Hybrid Hydrogel for Human Motion Monitoring
    Liu, Sijun
    Qiu, Yan
    Yu, Wei
    Zhang, Hongbin
    [J]. ACS APPLIED POLYMER MATERIALS, 2020, 2 (03): : 1325 - 1334
  • [22] Highly Stretchable, Conductive, Adhesive, and Self-Powered Ionogel Sensor for Human Motion Detection, Signal Transmission, and Traffic Monitoring
    Long, Tengyu
    Yuan, Weizhong
    Wang, Bing
    [J]. ACS APPLIED POLYMER MATERIALS, 2024, : 7904 - 7917
  • [23] Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels
    Li, Ruirui
    Ren, Jie
    Zhang, Minmin
    Li, Meng
    Li, Yan
    Yang, Wu
    [J]. BIOMACROMOLECULES, 2024, 25 (02) : 614 - 625
  • [24] Ultra-stretchable, high conductive, fatigue resistance, and self-healing strain sensor based on mussel-inspired adhesive hydrogel for human motion monitoring
    Zhao, Rongrong
    Gao, Min
    Zhao, Zengdian
    Song, Shasha
    [J]. EUROPEAN POLYMER JOURNAL, 2024, 211
  • [25] A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing and ultra-sensitive ionic hydrogel
    Yin, Jianyu
    Pan, Shenxin
    Wu, Lili
    Tan, Liyina
    Chen, Di
    Huang, Shan
    Zhang, Yuhong
    He, Peixin
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (48) : 17349 - 17364
  • [26] Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor
    Li, Xinjian
    Li, Xiaomeng
    Yan, Manqing
    Wang, Qiyang
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 242
  • [27] Stretchable, sensitive, flexible strain sensor incorporated with patterned liquid metal on hydrogel for human motion monitoring and human-machine interaction
    Wu, Huaping
    Qi, Hangcheng
    Wang, Xueer
    Qiu, Ye
    Shi, Kuanqiang
    Zhang, Hengjie
    Zhang, Zheng
    Zhang, Wenan
    Tian, Ye
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (21) : 8206 - 8217
  • [28] A Flexible, Conductive Hydrogel for Strain Sensor and Triboelectric Nanogenerator toward Human Motion Monitoring
    Long, Kaixiang
    Zhang, Yuanzheng
    Gao, Xiangyang
    Li, Jingxing
    Luo, Yuecong
    Huang, Mingkun
    Mao, Yiqian
    Hu, Chenxi
    Guo, Shishang
    [J]. ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (08) : 5496 - 5506
  • [29] Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors
    Huang, Xinmin
    Wang, Chengwei
    Yang, Lianhe
    Ao, Xiang
    [J]. MOLECULES, 2023, 28 (06):
  • [30] Highly Tough, Stretchable, Self-Adhesive and Strain-Sensitive DNA-Inspired Hydrogels for Monitoring Human Motion
    Chen, Binggang
    Wang, Wenliang
    Yan, Xinxin
    Li, Shengran
    Jiang, Sangni
    Liu, Sanrong
    Ma, Xiaojing
    Yu, Xifei
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (50) : 11604 - 11613