Fine-grained alignment network and local attention network for person re-identification

被引:0
|
作者
Zhou, Dongming [1 ]
Zhang, Canlong [1 ]
Tang, Yanping [2 ]
Li, Zhixin [1 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Human semantic parsing; Attention mechanism; Person re-identification; Partial alignment;
D O I
10.1007/s11042-022-12638-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the influence of person posture changes, light angle of view, background and other factors, person re-identification is a challenging task. To improve the identification accuracy, recent studies have divided the pedestrians in the dataset into several blocks to extract the local features of the image for re-identification. However, these methods have such problems as the mismatch of local features of the human body and the loss of contextual clues of non-human body parts. To solve the above problems, this paper proposes a partially aligned network that can be used for person re-identification, which uses accurate local features to increase the ability of human body semantic parsing to model arbitrary contours. On this basis, the local attention network captures contextual cues that are not part of the human body. In addition, by aligning the local features of human body semantic parsing, the robustness and mobility of the model can be effectively increased. The experimental results obtained with the three datasets, Market-1501, DukeMTMC and CUHK03, show the effectiveness of the proposed model.
引用
收藏
页码:43267 / 43281
页数:15
相关论文
共 50 条
  • [41] Attention-Aware Adversarial Network for Person Re-Identification
    Shen, Aihong
    Wang, Huasheng
    Wang, Junjie
    Tan, Hongchen
    Liu, Xiuping
    Cao, Junjie
    APPLIED SCIENCES-BASEL, 2019, 9 (08):
  • [42] A part-based attention network for person re-identification
    Zhong, Weilin
    Jiang, Linfeng
    Zhang, Tao
    Ji, Jinsheng
    Xiong, Huilin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (31-32) : 22525 - 22549
  • [43] Dual semantic interdependencies attention network for person re-identification
    Yang, Shengrong
    Hu, Haifeng
    Chen, Dihu
    Su, Tao
    ELECTRONICS LETTERS, 2020, 56 (25) : 1411 - 1413
  • [44] Reverse Pyramid Attention Guidance Network for Person Re-Identification
    Liu, Jiang
    Bai, Wei
    Hui, Yun
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2024, 18 (01)
  • [45] An efficient feature pyramid attention network for person re-identification
    Luo, Qian
    Shao, Jie
    Dang, Wanli
    Wang, Chao
    Cao, Libo
    Zhang, Tao
    IMAGE AND VISION COMPUTING, 2024, 145
  • [46] HPAN: A Hybrid Pose Attention Network for Person Re-Identification
    Huan, Ruohong
    Chen, Tianya
    Zhan, Ziwei
    Chen, Peng
    Liang, Ronghua
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XII, 2024, 14436 : 198 - 211
  • [47] Curriculum Enhanced Supervised Attention Network for Person Re-Identification
    Zhu, Xiaoguang
    Qian, Jiuchao
    Wang, Haoyu
    Liu, Peilin
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1665 - 1669
  • [48] Complementation-Reinforced Attention Network for Person Re-Identification
    Han, Chuchu
    Zheng, Ruochen
    Gao, Changxin
    Sang, Nong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (10) : 3433 - 3445
  • [49] Mixed Attention-Aware Network for Person Re-identification
    Sun, Wenchen
    Liu, Fang'ai
    Xu, Weizhi
    2019 12TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2019), 2019, : 120 - 123
  • [50] Attention-Aware Compositional Network for Person Re-identification
    Xu, Jing
    Zhao, Rui
    Zhu, Feng
    Wang, Huaming
    Ouyang, Wanli
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2119 - 2128