Fine-grained alignment network and local attention network for person re-identification

被引:0
|
作者
Zhou, Dongming [1 ]
Zhang, Canlong [1 ]
Tang, Yanping [2 ]
Li, Zhixin [1 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Human semantic parsing; Attention mechanism; Person re-identification; Partial alignment;
D O I
10.1007/s11042-022-12638-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the influence of person posture changes, light angle of view, background and other factors, person re-identification is a challenging task. To improve the identification accuracy, recent studies have divided the pedestrians in the dataset into several blocks to extract the local features of the image for re-identification. However, these methods have such problems as the mismatch of local features of the human body and the loss of contextual clues of non-human body parts. To solve the above problems, this paper proposes a partially aligned network that can be used for person re-identification, which uses accurate local features to increase the ability of human body semantic parsing to model arbitrary contours. On this basis, the local attention network captures contextual cues that are not part of the human body. In addition, by aligning the local features of human body semantic parsing, the robustness and mobility of the model can be effectively increased. The experimental results obtained with the three datasets, Market-1501, DukeMTMC and CUHK03, show the effectiveness of the proposed model.
引用
收藏
页码:43267 / 43281
页数:15
相关论文
共 50 条
  • [31] Unsupervised Person Re-Identification with Attention-Guided Fine-Grained Features and Symmetric Contrast Learning
    Wu, Yongzhi
    Yang, Wenzhong
    Wang, Mengting
    SENSORS, 2022, 22 (18)
  • [32] LOCAL TO GLOBAL WITH MULTI-SCALE ATTENTION NETWORK FOR PERSON RE-IDENTIFICATION
    Sun, Lingchuan
    Liu, Jianlei
    Zhu, Yingxin
    Jiang, Zhuqing
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2254 - 2258
  • [33] Learning Occlusion Disentanglement with Fine-grained Localization for Occluded Person Re-identification
    Liu, Wenfeng
    Wang, Xudong
    Tan, Lei
    Zhang, Yan
    Dai, Pingyang
    Wu, Yongjian
    Ji, Rongrong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6462 - 6471
  • [34] Fine-Grained Truck Re-identification: A Challenge
    Chen, Si-Bao
    Lin, Zi-Han
    Ding, Chris H. Q.
    Luo, Bin
    COGNITIVE COMPUTATION, 2023, 15 (06) : 1947 - 1960
  • [35] Fine-Grained Truck Re-identification: A Challenge
    Si-Bao Chen
    Zi-Han Lin
    Chris H. Q. Ding
    Bin Luo
    Cognitive Computation, 2023, 15 : 1947 - 1960
  • [36] Dual Distribution Alignment Network for Generalizable Person Re-Identification
    Chen, Peixian
    Dai, Pingyang
    Liu, Jianzhuang
    Zheng, Feng
    Xu, Mingliang
    Tian, Qi
    Ji, Rongrong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1054 - 1062
  • [37] Double-Resolution Attention Network for Person Re-Identification
    Hu Jiajie
    Li Chungeng
    An Jubai
    Huang Chao
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [38] Semantic guidance attention network for occluded person re-identification
    Ren X.
    Zhang D.
    Bao X.
    Li B.
    Tongxin Xuebao/Journal on Communications, 2021, 42 (10): : 106 - 116
  • [39] Deep Network with Spatial and Channel Attention for Person Re-identification
    Guo, Tiansheng
    Wang, Dongfei
    Jiang, Zhuqing
    Men, Aidong
    Zhou, Yun
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [40] A part-based attention network for person re-identification
    Weilin Zhong
    Linfeng Jiang
    Tao Zhang
    Jinsheng Ji
    Huilin Xiong
    Multimedia Tools and Applications, 2020, 79 : 22525 - 22549