Quantum error correction with molecular spin qudits

被引:24
|
作者
Chizzini, Mario [1 ,2 ]
Crippa, Luca [1 ,3 ]
Zaccardi, Luca [1 ,4 ]
Macaluso, Emilio [1 ,2 ,4 ]
Carretta, Stefano [1 ,2 ,4 ]
Chiesa, Alessandro [1 ,2 ,4 ]
Santini, Paolo [1 ,2 ,4 ]
机构
[1] Univ Parma, Dipartimento Sci Matemat, Fis & Informat, I-43124 Parma, Italy
[2] INFN, Sez Milano Bicocca, Grp Collegato Parma, I-43124 Parma, Italy
[3] IBM Italia Spa, I-20090 Segrate, Italy
[4] UdR Parma, INSTM, I-43124 Parma, Italy
基金
欧盟地平线“2020”;
关键词
QUBITS; COHERENCE; NMR; COMPLEXES;
D O I
10.1039/d2cp01228f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thanks to the large number of levels which can be coherently manipulated, molecular spin systems constitute a very promising platform for quantum computing. Indeed, they can embed quantum error correction within single molecular objects, thus greatly simplifying its actual realization in the short term. We consider a recent proposal, which exploits a spin qudit to encode the protected unit, and is tailored to fight pure dephasing. Here we compare the implementation of this code on different molecules, in which the qudit is provided by either an electronic or a nuclear spin (S, I > 1), coupled to a spin-1/2 electronic ancilla for error detection. By thorough numerical simulations we show that a significant gain in the effective phase memory time can be achieved. This is further enhanced by exploiting pulse-shaping techniques to reduce the leakage and/or the impact of decoherence during correction. Moreover, we simulate the implementation of single-qubit operations on the encoded states.
引用
收藏
页码:20030 / 20039
页数:11
相关论文
共 50 条
  • [41] A Survey of Quantum Error Correction
    Matsumoto, Ryutaroh
    Hagiwara, Manabu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (12) : 1654 - 1664
  • [42] Analog quantum error correction
    Lloyd, S
    Slotine, JJE
    PHYSICAL REVIEW LETTERS, 1998, 80 (18) : 4088 - 4091
  • [43] Realization of quantum error correction
    Chiaverini, J
    Leibfried, D
    Schaetz, T
    Barrett, MD
    Blakestad, RB
    Britton, J
    Itano, WM
    Jost, JD
    Knill, E
    Langer, C
    Ozeri, R
    Wineland, DJ
    NATURE, 2004, 432 (7017) : 602 - 605
  • [44] Tracking quantum error correction
    Fukui, Kosuke
    Tomita, Akihisa
    Okamoto, Atsushi
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [45] Quantum error correction for communication
    Ekert, A
    Macchiavello, C
    PHYSICAL REVIEW LETTERS, 1996, 77 (12) : 2585 - 2588
  • [46] Quantum Error Correction at the Threshold
    不详
    IEEE SPECTRUM, 2022, 59 (07) : 28 - 34
  • [47] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 121 - 126
  • [48] On the Probabilistic Quantum Error Correction
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4620 - 4640
  • [49] Perturbative Quantum Error Correction
    Beny, Cedric
    PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [50] Quantum memories and error correction
    Wootton, James R.
    JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1717 - 1738