Quantum error correction with molecular spin qudits

被引:24
|
作者
Chizzini, Mario [1 ,2 ]
Crippa, Luca [1 ,3 ]
Zaccardi, Luca [1 ,4 ]
Macaluso, Emilio [1 ,2 ,4 ]
Carretta, Stefano [1 ,2 ,4 ]
Chiesa, Alessandro [1 ,2 ,4 ]
Santini, Paolo [1 ,2 ,4 ]
机构
[1] Univ Parma, Dipartimento Sci Matemat, Fis & Informat, I-43124 Parma, Italy
[2] INFN, Sez Milano Bicocca, Grp Collegato Parma, I-43124 Parma, Italy
[3] IBM Italia Spa, I-20090 Segrate, Italy
[4] UdR Parma, INSTM, I-43124 Parma, Italy
基金
欧盟地平线“2020”;
关键词
QUBITS; COHERENCE; NMR; COMPLEXES;
D O I
10.1039/d2cp01228f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thanks to the large number of levels which can be coherently manipulated, molecular spin systems constitute a very promising platform for quantum computing. Indeed, they can embed quantum error correction within single molecular objects, thus greatly simplifying its actual realization in the short term. We consider a recent proposal, which exploits a spin qudit to encode the protected unit, and is tailored to fight pure dephasing. Here we compare the implementation of this code on different molecules, in which the qudit is provided by either an electronic or a nuclear spin (S, I > 1), coupled to a spin-1/2 electronic ancilla for error detection. By thorough numerical simulations we show that a significant gain in the effective phase memory time can be achieved. This is further enhanced by exploiting pulse-shaping techniques to reduce the leakage and/or the impact of decoherence during correction. Moreover, we simulate the implementation of single-qubit operations on the encoded states.
引用
收藏
页码:20030 / 20039
页数:11
相关论文
共 50 条
  • [31] Molecular Nanomagnets as Qubits with Embedded Quantum-Error Correction
    Chiesa, A.
    Macaluso, E.
    Petiziol, F.
    Wimberger, S.
    Santini, P.
    Carretta, S.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (20): : 8610 - 8615
  • [32] Quantum interleaver: Quantum error correction for burst error
    Kawabata, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3540 - 3543
  • [33] Quantum Error Correction with Quantum Autoencoders
    Locher, David F.
    Cardarelli, Lorenzo
    Mueller, Markus
    QUANTUM, 2023, 7
  • [34] Quantum error correction for quantum memories
    Terhal, Barbara M.
    REVIEWS OF MODERN PHYSICS, 2015, 87 (02) : 307 - 346
  • [35] Quantum error correction and quantum computation
    Alber, G
    Delgado, A
    Mussinger, M
    LASER PHYSICS, 2002, 12 (04) : 742 - 750
  • [36] Error-corrected quantum repeaters with Gottesman-Kitaev-Preskill qudits
    Schmidt, Frank
    Miller, Daniel
    van Loock, Peter
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [37] Bases for Spin Systems and Qudits
    Kibler, Maurice R.
    PROCEEDINGS OF THE PHYSICS CONFERENCE TIM-08, 2009, 1131 : 3 - 10
  • [38] Dephasing-tolerant quantum sensing for transverse magnetic fields with spin qudits
    Mezzadri, Matteo
    Lepori, Luca
    Chiesa, Alessandro
    Carretta, Stefano
    QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (01):
  • [39] Quantum computing and error correction
    Steane, AM
    DECOHERENCE AND ITS IMPLICATIONS IN QUANTUM COMPUTATION AND INFORMATION TRANSFER, 2001, 182 : 284 - 298
  • [40] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 158 - 166