Incompatible Coulomb hamiltonian extensions

被引:0
|
作者
Abramovici, G. [1 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Phys Solides, F-91405 Orsay, France
关键词
BAND-STRUCTURE;
D O I
10.1038/s41598-020-62144-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We revisit the resolution of the one-dimensional Schrodinger hamiltonian with a Coulomb lambda/|x| potential. We examine among its self-adjoint extensions those which are compatible with physical conservation laws. In the one-dimensional semi-infinite case, we show that they are classified on a U(1) circle in the attractive case and on (R,+infinity) in the repulsive one. In the one-dimensional infinite case, we find a specific and original classification by studying the continuity of eigenfunctions. In all cases, different extensions are incompatible one with the other. For an actual experiment with an attractive potential, the bound spectrum can be used to discriminate which extension is the correct one.
引用
收藏
页数:20
相关论文
共 50 条