Incompatible Coulomb hamiltonian extensions

被引:0
|
作者
Abramovici, G. [1 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Phys Solides, F-91405 Orsay, France
关键词
BAND-STRUCTURE;
D O I
10.1038/s41598-020-62144-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We revisit the resolution of the one-dimensional Schrodinger hamiltonian with a Coulomb lambda/|x| potential. We examine among its self-adjoint extensions those which are compatible with physical conservation laws. In the one-dimensional semi-infinite case, we show that they are classified on a U(1) circle in the attractive case and on (R,+infinity) in the repulsive one. In the one-dimensional infinite case, we find a specific and original classification by studying the continuity of eigenfunctions. In all cases, different extensions are incompatible one with the other. For an actual experiment with an attractive potential, the bound spectrum can be used to discriminate which extension is the correct one.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] The Dirac Hamiltonian with a superstrong Coulomb field
    Voronov, B. L.
    Gitman, D. M.
    Tyutin, I. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 150 (01) : 34 - 72
  • [12] DIRAC HAMILTONIAN FOR STRONG COULOMB FIELDS
    BURNAP, C
    BRYSK, H
    ZWEIFEL, PF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1981, 64 (02): : 407 - 419
  • [13] The Dirac Hamiltonian with a superstrong Coulomb field
    B. L. Voronov
    D. M. Gitman
    I. V. Tyutin
    Theoretical and Mathematical Physics, 2007, 150 : 34 - 72
  • [14] Strongly Hyperbolic Extensions of the ADM Hamiltonian
    Brown, J. David
    QUANTUM MECHANICS OF FUNDAMENTAL SYSTEMS: THE QUEST FOR BEAUTY AND SIMPLICITY, CLAUDIO BUNSTER FESTSCHRIFT, 2009, : 71 - 90
  • [15] EIGENSOLUTION OF THE COULOMB HAMILTONIAN VIA SUPERSYMMETRY
    VALANCE, A
    MORGAN, TJ
    BERGERON, H
    AMERICAN JOURNAL OF PHYSICS, 1990, 58 (05) : 487 - 491
  • [16] Color-Coulomb force calculated from lattice Coulomb Hamiltonian
    Cucchieri, A
    Zwanziger, D
    NUCLEAR PHYSICS B, 1997, : 815 - 818
  • [17] Cwikel–Lieb–Rozenblum inequalities for the Coulomb Hamiltonian
    Andrés Díaz Selvi
    Analysis and Mathematical Physics, 2024, 14
  • [18] Geminals in Dirac–Coulomb Hamiltonian eigenvalue problem
    Grzegorz Pestka
    Mirosław Bylicki
    Jacek Karwowski
    Journal of Mathematical Chemistry, 2012, 50 : 510 - 533
  • [19] COVARIANT HAMILTONIAN FORMULATION OF ELECTRODYNAMICS IN COULOMB GAUGE
    POULAIN, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1975, 83 (01) : 193 - 202
  • [20] Gravitational Modification of the Coulomb-Breit Hamiltonian
    Alexander Caicedo, Jose
    Fernando Urrutia, Luis
    PARTICLES AND FIELDS, 2009, 1116 : 412 - 414