Clustering of heterogeneous populations of networks

被引:3
|
作者
Young, Jean-Gabriel [1 ,2 ]
Kirkley, Alec [3 ,4 ]
Newman, M. E. J. [3 ,5 ]
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05405 USA
[2] Univ Vermont, Vermont Complex Syst Ctr, Burlington, VT 05405 USA
[3] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[4] City Univ Hong Kong, Sch Data Sci, Hong Kong 999077, Peoples R China
[5] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
STATISTICAL-ANALYSIS; INFERENCE;
D O I
10.1103/PhysRevE.105.014312
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Statistical methods for reconstructing networks from repeated measurements typically assume that all mea-surements are generated from the same underlying network structure. This need not be the case, however. People's social networks might be different on weekdays and weekends, for instance. Brain networks may differ between healthy patients and those with dementia or other conditions. Here we describe a Bayesian analysis framework for such data that allows for the fact that network measurements may be reflective of multiple possible structures. We define a finite mixture model of the measurement process and derive a Gibbs sampling procedure that samples exactly from the full posterior distribution of model parameters. The end result is a clustering of the measured networks into groups with similar structure. We demonstrate the method on both real and synthetic network populations.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A generic model for selective adaptation in networks of heterogeneous populations
    Avner Wallach
    Danny Eytan
    Shimon Marom
    Ron Meir
    [J]. BMC Neuroscience, 8 (Suppl 2)
  • [32] Persistence time of SIS infections in heterogeneous populations and networks
    Damian Clancy
    [J]. Journal of Mathematical Biology, 2018, 77 : 545 - 570
  • [33] Semi-supervised Clustering in Attributed Heterogeneous Information Networks
    Li, Xiang
    Wu, Yao
    Ester, Martin
    Kao, Ben
    Wang, Xin
    Zheng, Yudian
    [J]. PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), 2017, : 1621 - 1629
  • [34] An Energy Efficient Clustering in Heterogeneous Wireless Sensor and Actuators Networks
    Pham Tran Anh Quang
    Kim, Dong-Sung
    [J]. 2012 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2012, : 524 - 528
  • [35] Clustering Algorithm in Dense Millimeter Wave Heterogeneous Cellular Networks
    Jianfei Li
    [J]. Wireless Personal Communications, 2023, 131 : 2311 - 2330
  • [36] Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion
    Assisi, CG
    Jirsa, VK
    Kelso, JAS
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (01)
  • [37] A hybrid clustering approach for link prediction in heterogeneous information networks
    Sajjadi, Zahra Sadat
    Esmaeili, Mahdi
    Ghobaei-Arani, Mostafa
    Minaei-Bidgoli, Behrouz
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (11) : 4905 - 4937
  • [38] Residual Energy Aware Clustering Algorithm for Heterogeneous Sensor Networks
    Cui, Xiaohua
    Cao, Jiangtao
    Zhang, Yi
    [J]. 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS AND CONTROL (ICMC), 2014, : 583 - 588
  • [39] Network selection in heterogeneous dense networks based on user clustering
    Alireza Ahadipour
    Alireza Keshavarz-Haddad
    [J]. Wireless Networks, 2024, 30 : 1133 - 1148
  • [40] Heterogeneous load balancing clustering protocol for Wireless Sensor Networks
    Kaur, Sukhkirandeep
    Mir, Roohie Naaz
    Khamparia, Aditya
    Rani, Poonam
    Gupta, Deepak
    Khanna, Ashish
    [J]. COGNITIVE SYSTEMS RESEARCH, 2021, 70 : 10 - 17