Clustering of heterogeneous populations of networks

被引:3
|
作者
Young, Jean-Gabriel [1 ,2 ]
Kirkley, Alec [3 ,4 ]
Newman, M. E. J. [3 ,5 ]
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05405 USA
[2] Univ Vermont, Vermont Complex Syst Ctr, Burlington, VT 05405 USA
[3] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[4] City Univ Hong Kong, Sch Data Sci, Hong Kong 999077, Peoples R China
[5] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
STATISTICAL-ANALYSIS; INFERENCE;
D O I
10.1103/PhysRevE.105.014312
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Statistical methods for reconstructing networks from repeated measurements typically assume that all mea-surements are generated from the same underlying network structure. This need not be the case, however. People's social networks might be different on weekdays and weekends, for instance. Brain networks may differ between healthy patients and those with dementia or other conditions. Here we describe a Bayesian analysis framework for such data that allows for the fact that network measurements may be reflective of multiple possible structures. We define a finite mixture model of the measurement process and derive a Gibbs sampling procedure that samples exactly from the full posterior distribution of model parameters. The end result is a clustering of the measured networks into groups with similar structure. We demonstrate the method on both real and synthetic network populations.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Multi-type clustering in heterogeneous information networks
    Wangqun Lin
    Philip S. Yu
    Yuchen Zhao
    Bo Deng
    [J]. Knowledge and Information Systems, 2016, 48 : 143 - 178
  • [22] A Clustering Algorithm for Heterogeneous Sensor Networks with Multilevel Energies
    Zhang Ying
    Ji Chang-gang
    Li Jun-fu
    [J]. 2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 7421 - 7426
  • [23] Adaptive Pilot Clustering in Heterogeneous Massive MIMO Networks
    Mochaourab, Rami
    Bjornson, Emil
    Bengtsson, Mats
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (08) : 5555 - 5568
  • [24] Heirarchical Clustering in Heterogeneous Wireless Sensor Networks: A Survey
    Tiwari, Twinkle
    Roy, Nihar Ranjan
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION & AUTOMATION (ICCCA), 2015, : 1385 - 1390
  • [25] Higher-order Clustering in Complex Heterogeneous Networks
    Carranza, Aldo G.
    Rossi, Ryan A.
    Rao, Anup
    Koh, Eunyee
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 25 - 35
  • [26] Heuristic Clustering with Secured Routing in Heterogeneous Sensor Networks
    Gagneja, Kanwalinderjit Kaur
    Nygard, Kendall E.
    [J]. 2013 IEEE INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY OF MOBILE, WIRELESS, AND SENSOR NETWORKS (MWSN), 2013,
  • [27] Reconstructing Heterogeneous Networks via Compressive Sensing and Clustering
    Zhang, Yichi
    Yang, Chunhua
    Huang, Keke
    Jusup, Marko
    Wang, Zhen
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (06): : 920 - 930
  • [28] Social Influence Based Clustering of Heterogeneous Information Networks
    Zhou, Yang
    Liu, Ling
    [J]. 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 338 - 346
  • [29] Persistence time of SIS infections in heterogeneous populations and networks
    Clancy, Damian
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (03) : 545 - 570
  • [30] The geography of power: Statistical performance of tests of clusters and clustering in heterogeneous populations
    Waller, LA
    Hill, EG
    Rudd, RA
    [J]. STATISTICS IN MEDICINE, 2006, 25 (05) : 853 - 865