Semi-parametric analysis of efficiency and productivity using Gaussian processes

被引:0
|
作者
Emvalomatis, Grigorios [1 ]
机构
[1] Univ Dundee, Econ Studies, Perth Rd, Dundee DD1 4HN, Scotland
来源
ECONOMETRICS JOURNAL | 2020年 / 23卷 / 01期
关键词
Gaussian process regression; stochastic frontier; total-factor productivity decomposition; MODELS; INFERENCE; DECOMPOSITION; SIMULATION;
D O I
10.1093/ectj/utz013
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a fully Bayesian semi-parametric method for efficiency and productivity analysis based onGaussian processes. The proposed technique frees the researcher from having to specify a functional form for the production frontier, and it is shown in simulated data to perform as well as flexible parametric models when correct distributional assumptions are imposed on the inefficiency component of the error term, and slightly better when incorrect assumptions are made. The technique is applied to a panel dataset of US electric utilities, where total-factor productivity growth is estimated and decomposed with both parametric and semi-parametric techniques.
引用
收藏
页码:48 / 67
页数:20
相关论文
共 50 条
  • [41] Testing linearity in semi-parametric functional data analysis
    Aneiros-Perez, German
    Vieu, Philippe
    COMPUTATIONAL STATISTICS, 2013, 28 (02) : 413 - 434
  • [42] A semi-parametric analysis of the cash flow sensitivity of cash
    Kadzima, Marvelous
    Machokoto, Michael
    FINANCE RESEARCH LETTERS, 2023, 56
  • [43] Bayesian analysis of generalized elliptical semi-parametric models
    Rondon, Luz Marina
    Bolfarine, Heleno
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (08) : 1508 - 1524
  • [44] Semi-parametric estimation of shifts
    Gamboa, Fabrice
    Loubes, Jean-Michel
    Maza, Elie
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 616 - 640
  • [45] Semi-parametric ROC regression analysis with placement values
    Cai, TX
    BIOSTATISTICS, 2004, 5 (01) : 45 - 60
  • [46] Semi-parametric analysis of multi-rater data
    Rogers, Simon
    Girolami, Mark
    Polajnar, Tamara
    STATISTICS AND COMPUTING, 2010, 20 (03) : 317 - 334
  • [47] Beyond the Graphs: Semi-parametric Semi-supervised Discriminant Analysis
    Wang, Fei
    Wang, Xin
    Li, Tao
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2113 - 2120
  • [48] Testing linearity in semi-parametric functional data analysis
    Germán Aneiros-Pérez
    Philippe Vieu
    Computational Statistics, 2013, 28 : 413 - 434
  • [49] Semi-parametric analysis of multi-rater data
    Simon Rogers
    Mark Girolami
    Tamara Polajnar
    Statistics and Computing, 2010, 20 : 317 - 334
  • [50] A semi-parametric approach to analysis of event duration and prevalence
    Wang, Jixian
    Quartey, George
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 67 : 248 - 257