Semi-parametric analysis of efficiency and productivity using Gaussian processes

被引:0
|
作者
Emvalomatis, Grigorios [1 ]
机构
[1] Univ Dundee, Econ Studies, Perth Rd, Dundee DD1 4HN, Scotland
来源
ECONOMETRICS JOURNAL | 2020年 / 23卷 / 01期
关键词
Gaussian process regression; stochastic frontier; total-factor productivity decomposition; MODELS; INFERENCE; DECOMPOSITION; SIMULATION;
D O I
10.1093/ectj/utz013
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a fully Bayesian semi-parametric method for efficiency and productivity analysis based onGaussian processes. The proposed technique frees the researcher from having to specify a functional form for the production frontier, and it is shown in simulated data to perform as well as flexible parametric models when correct distributional assumptions are imposed on the inefficiency component of the error term, and slightly better when incorrect assumptions are made. The technique is applied to a panel dataset of US electric utilities, where total-factor productivity growth is estimated and decomposed with both parametric and semi-parametric techniques.
引用
收藏
页码:48 / 67
页数:20
相关论文
共 50 条
  • [31] Multi-Sparse Gaussian Process: Learning based Semi-Parametric Control
    Khan, Mouhyemen
    Patel, Akash
    Chatterjee, Abhijit
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5327 - 5334
  • [32] Semi-parametric estimation of the variogram scale parameter of a Gaussian process with stationary increments
    Azais, Jean-Marc
    Bachoc, Francois
    Lagnoux, Agnes
    Nguyen, Thi Mong Ngoc
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 842 - 882
  • [33] Semi-parametric modelling of inefficiencies in stochastic frontier analysis
    Giovanni Forchini
    Raoul Theler
    Journal of Productivity Analysis, 2023, 59 : 135 - 152
  • [34] Assessing the maintenance in a process using a semi-parametric approach
    Ansell, J
    Archibald, T
    Dagpunar, J
    Thomas, L
    Abell, P
    Duncalf, D
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2001, 17 (03) : 163 - 167
  • [35] Mediation Analysis using Semi-parametric Shape-Restricted Regression with Applications
    Yin, Qing
    Jeong, Jong-Hyeon
    Qin, Xu
    Peddada, Shyamal D.
    Adibi, Jennifer J.
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2024, 86 (02): : 669 - 689
  • [36] Analysis of failure time using threshold regression with semi-parametric varying coefficients
    Li, Jialiang
    Lee, Mei-Ling Ting
    STATISTICA NEERLANDICA, 2011, 65 (02) : 164 - 182
  • [37] Semi-parametric Image Synthesis
    Qi, Xiaojuan
    Chen, Qifeng
    Jia, Jiaya
    Koltun, Vladlen
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8808 - 8816
  • [38] Semi-parametric resampling with extremes
    Opitz, Thomas
    Allard, Denis
    Mariethoz, Gregoire
    SPATIAL STATISTICS, 2021, 42
  • [39] Semi-parametric cluster detection
    Kedem B.
    Wen S.
    Journal of Statistical Theory and Practice, 2007, 1 (1) : 49 - 72
  • [40] Semi-parametric modelling of inefficiencies in stochastic frontier analysis
    Forchini, Giovanni
    Theler, Raoul
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2023, 59 (02) : 135 - 152