Exploiting flux shadowing for strain and bending engineering in core-shell nanowires

被引:2
|
作者
Al Humaidi, Mahmoud [1 ,2 ,3 ]
Jakob, Julian [1 ,2 ]
Al Hassan, Ali [2 ,3 ]
Davtyan, Arman [3 ]
Schroth, Philipp [1 ,2 ,3 ]
Feigl, Ludwig [2 ]
Herranz, Jesus [4 ]
Novikov, Dmitri [5 ]
Geelhaar, Lutz [4 ]
Baumbach, Tilo [1 ,2 ]
Pietsch, Ullrich [3 ]
机构
[1] Karlsruhe Inst Technol, Lab Applicat Synchrotron Radiat, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Emmy Noether Campus, Solid State Phys, Walter Flex Str 3, D-57068 Siegen, Germany
[4] Paul Drude Inst Festkorperelektron, Leibniz Inst Forschungsverbund Berlin EV, Hausvogteipl 5-7, D-10117 Berlin, Germany
[5] PETRA III, Deutsch Elektronen Synchrotron, D-22607 Hamburg, Germany
关键词
DYNAMICS;
D O I
10.1039/d2nr03279a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we report on the non-uniform shell growth of InxGa1-xAs on the GaAs nanowire (NW) core by molecular beam epitaxy (MBE). The growth was realized on pre-patterned silicon substrates with the pitch size (p) ranging from 0.1 mu m to 10 mu m. Considering the preferable bending direction with respect to the MBE cells as well as the layout of the substrate pattern, we were able to modify the strain distribution along the NW growth axis and the subsequent bending profile. For NW arrays with a high number density, the obtained bending profile of the NWs is composed of straight (barely-strained) and bent (strained) segments with different lengths which depend on the pitch size. A precise control of the bent and straight NW segment length provides a method to design NW based devices with length selective strain distribution.
引用
收藏
页码:2254 / 2261
页数:8
相关论文
共 50 条
  • [41] Core-shell magnetic nanowires fabrication and characterization
    Kalska-Szostko, B.
    Kiekotka, U.
    Satula, D.
    [J]. APPLIED SURFACE SCIENCE, 2017, 396 : 1855 - 1859
  • [42] Radial modulation doping in core-shell nanowires
    Dillen D.C.
    Kim K.
    Liu E.-S.
    Tutuc E.
    [J]. Nat. Nanotechnol., 2 (116-120): : 116 - 120
  • [43] Nonlocal Dielectric Effects in Core-Shell Nanowires
    McMahon, Jeffrey M.
    Gray, Stephen K.
    Schatz, George C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (38): : 15903 - 15908
  • [44] Majorana states in prismatic core-shell nanowires
    Manolescu, Andrei
    Sitek, Anna
    Osca, Javier
    Serra, Llorenc
    Gudmundsson, Vidar
    Stanescu, Tudor Dan
    [J]. PHYSICAL REVIEW B, 2017, 96 (12)
  • [45] Complementary resistive switching in core-shell nanowires
    Vasisth, Shangradhanva E.
    Nino, Juan C.
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 130 (15)
  • [46] Magnetic resonance on core-shell nanowires with notches
    Xu, Lina
    Zhang, Zhi-Jian
    Lee, Bong Jae
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (10)
  • [47] Enhancement of Optoelectronic Properties of Core-Shell Nanowires
    Wang, Zhihuan
    Currie, Marc
    Dianat, Pouya
    Montazeri, Kiana
    Nabet, Bahram
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2018, 17 (05) : 1058 - 1062
  • [48] Radiated fields by polygonal core-shell nanowires
    Torres, Miguel Urbaneja
    Sitek, Anna
    Gudmundsson, Vidar
    Manolescu, Andrei
    [J]. 2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [49] GaAs Core-Shell Nanowires for Photovoltaic Applications
    Czaban, Josef A.
    Thompson, David A.
    LaPierre, Ray R.
    [J]. NANO LETTERS, 2009, 9 (01) : 148 - 154
  • [50] Asymmetrical reorientation of bimetallic core-shell nanowires
    Ma, F.
    Ma, S. L.
    Xu, K. W.
    Chu, Paul K.
    [J]. NANOTECHNOLOGY, 2009, 20 (04)