Exploiting flux shadowing for strain and bending engineering in core-shell nanowires

被引:2
|
作者
Al Humaidi, Mahmoud [1 ,2 ,3 ]
Jakob, Julian [1 ,2 ]
Al Hassan, Ali [2 ,3 ]
Davtyan, Arman [3 ]
Schroth, Philipp [1 ,2 ,3 ]
Feigl, Ludwig [2 ]
Herranz, Jesus [4 ]
Novikov, Dmitri [5 ]
Geelhaar, Lutz [4 ]
Baumbach, Tilo [1 ,2 ]
Pietsch, Ullrich [3 ]
机构
[1] Karlsruhe Inst Technol, Lab Applicat Synchrotron Radiat, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Emmy Noether Campus, Solid State Phys, Walter Flex Str 3, D-57068 Siegen, Germany
[4] Paul Drude Inst Festkorperelektron, Leibniz Inst Forschungsverbund Berlin EV, Hausvogteipl 5-7, D-10117 Berlin, Germany
[5] PETRA III, Deutsch Elektronen Synchrotron, D-22607 Hamburg, Germany
关键词
DYNAMICS;
D O I
10.1039/d2nr03279a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we report on the non-uniform shell growth of InxGa1-xAs on the GaAs nanowire (NW) core by molecular beam epitaxy (MBE). The growth was realized on pre-patterned silicon substrates with the pitch size (p) ranging from 0.1 mu m to 10 mu m. Considering the preferable bending direction with respect to the MBE cells as well as the layout of the substrate pattern, we were able to modify the strain distribution along the NW growth axis and the subsequent bending profile. For NW arrays with a high number density, the obtained bending profile of the NWs is composed of straight (barely-strained) and bent (strained) segments with different lengths which depend on the pitch size. A precise control of the bent and straight NW segment length provides a method to design NW based devices with length selective strain distribution.
引用
收藏
页码:2254 / 2261
页数:8
相关论文
共 50 条
  • [31] Strain influenced indium composition distribution in GaN/InGaN core-shell nanowires
    Li, Qiming
    Wang, George T.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (18)
  • [32] Core-Shell Nanowires for Efficient Photovoltaic Devices
    不详
    [J]. CHEMPHYSCHEM, 2011, 12 (13) : 2373 - 2373
  • [33] Thermal conductivity reduction in core-shell nanowires
    Hu, Ming
    Zhang, Xiaoliang
    Giapis, Konstantinos P.
    Poulikakos, Dimos
    [J]. PHYSICAL REVIEW B, 2011, 84 (08):
  • [34] Layered structure in core-shell silicon nanowires
    Pham Van Tuan
    Chu Anh Tuan
    Iran Thanh Thuy
    Vu Binh Nam
    Pham Toan Thang
    Pham Hong Duong
    Pham Thanh Huy
    [J]. JOURNAL OF LUMINESCENCE, 2014, 154 : 46 - 50
  • [35] Radial modulation doping in core-shell nanowires
    Dillen, David C.
    Kim, Kyounghwan
    Liu, En-Shao
    Tutuc, Emanuel
    [J]. NATURE NANOTECHNOLOGY, 2014, 9 (02) : 116 - 120
  • [36] Anisotropic In distribution in InGaN core-shell nanowires
    Leclere, C.
    Katcho, N. A.
    Tourbot, G.
    Daudin, B.
    Proietti, M. G.
    Renevier, H.
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 116 (01)
  • [37] Polytypism in GaAs/GaNAs core-shell nanowires
    Yukimune, M.
    Fujiwara, R.
    Mita, T.
    Ishikawa, F.
    [J]. NANOTECHNOLOGY, 2020, 31 (50)
  • [38] Band structure of core-shell semiconductor nanowires
    Pistol, M. -E.
    Pryor, C. E.
    [J]. PHYSICAL REVIEW B, 2008, 78 (11):
  • [39] Electrochemical synthesis of core-shell magnetic nanowires
    Ovejero, Jesus G.
    Bran, Cristina
    Morales, Maria P.
    Vazquez, Manuel
    Vilanova, Enrique
    Kosel, Juergen
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 389 : 144 - 147
  • [40] Si-SiC core-shell nanowires
    Ollivier, M.
    Latu-Romain, L.
    Martin, M.
    David, S.
    Mantoux, A.
    Bano, E.
    Souliere, V.
    Ferro, G.
    Baron, T.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2013, 363 : 158 - 163