Exploiting flux shadowing for strain and bending engineering in core-shell nanowires

被引:2
|
作者
Al Humaidi, Mahmoud [1 ,2 ,3 ]
Jakob, Julian [1 ,2 ]
Al Hassan, Ali [2 ,3 ]
Davtyan, Arman [3 ]
Schroth, Philipp [1 ,2 ,3 ]
Feigl, Ludwig [2 ]
Herranz, Jesus [4 ]
Novikov, Dmitri [5 ]
Geelhaar, Lutz [4 ]
Baumbach, Tilo [1 ,2 ]
Pietsch, Ullrich [3 ]
机构
[1] Karlsruhe Inst Technol, Lab Applicat Synchrotron Radiat, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Emmy Noether Campus, Solid State Phys, Walter Flex Str 3, D-57068 Siegen, Germany
[4] Paul Drude Inst Festkorperelektron, Leibniz Inst Forschungsverbund Berlin EV, Hausvogteipl 5-7, D-10117 Berlin, Germany
[5] PETRA III, Deutsch Elektronen Synchrotron, D-22607 Hamburg, Germany
关键词
DYNAMICS;
D O I
10.1039/d2nr03279a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we report on the non-uniform shell growth of InxGa1-xAs on the GaAs nanowire (NW) core by molecular beam epitaxy (MBE). The growth was realized on pre-patterned silicon substrates with the pitch size (p) ranging from 0.1 mu m to 10 mu m. Considering the preferable bending direction with respect to the MBE cells as well as the layout of the substrate pattern, we were able to modify the strain distribution along the NW growth axis and the subsequent bending profile. For NW arrays with a high number density, the obtained bending profile of the NWs is composed of straight (barely-strained) and bent (strained) segments with different lengths which depend on the pitch size. A precise control of the bent and straight NW segment length provides a method to design NW based devices with length selective strain distribution.
引用
收藏
页码:2254 / 2261
页数:8
相关论文
共 50 条
  • [1] Strain in crystalline core-shell nanowires
    Ferrand, David
    Cibert, Joel
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2014, 67 (03):
  • [2] Strain in semiconductor core-shell nanowires
    Gronqvist, Johan
    Sondergaard, Niels
    Boxberg, Fredrik
    Guhr, Thomas
    Aberg, Sven
    Xu, H. Q.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
  • [3] Strain engineering of band offsets in Si/Ge core-shell nanowires
    Huang, Shouting
    Yang, Li
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (09)
  • [4] Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core-Shell Heterostructures
    Lewis, Ryan B.
    Corfdir, Pierre
    Kuepers, Hanno
    Flissikowski, Timur
    Brandt, Oliver
    Geelhaar, Lutz
    [J]. NANO LETTERS, 2018, 18 (04) : 2343 - 2350
  • [5] Strain engineering of core-shell silicon carbide nanowires for mechanical and piezoresistive characterizations
    Nakata, Shinya
    Uesugi, Akio
    Sugano, Koji
    Rossi, Francesca
    Salviati, Giancarlo
    Lugstein, Alois
    Isono, Yoshitada
    [J]. NANOTECHNOLOGY, 2019, 30 (26)
  • [6] Twofold origin of strain-induced bending in core-shell nanowires: the GaP/InGaP case
    Gagliano, Luca
    Albani, Marco
    Verheijen, Marcel A.
    Bakkers, Erik P. A. M.
    Miglio, Leo
    [J]. NANOTECHNOLOGY, 2018, 29 (31)
  • [7] Axial strain in GaAs/InAs core-shell nanowires
    Biermanns, Andreas
    Rieger, Torsten
    Bussone, Genziana
    Pietsch, Ullrich
    Gruetzmacher, Detlev
    Lepsa, Mihail Ion
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (04)
  • [8] Strain engineering in Ge/GeSn core/shell nanowires
    Assali, S.
    Albani, M.
    Bergamaschini, R.
    Verheijen, M. A.
    Li, A.
    Kolling, S.
    Gagliano, L.
    Bakkers, E. P. A. M.
    Miglio, L.
    [J]. APPLIED PHYSICS LETTERS, 2019, 115 (11)
  • [9] Flux-periodic oscillations in proximitized core-shell nanowires
    Klausen, Kristjan Ottar
    Sitek, Anna
    Erlingsson, Sigurdur I.
    Manolescu, Andrei
    [J]. NANOTECHNOLOGY, 2023, 34 (34)
  • [10] Nanostructure and strain properties of core-shell GaAs/AlGaAs nanowires
    Kehagias, Th
    Florini, N.
    Kioseoglou, J.
    Pavloudis, Th
    Komninou, Ph
    Walther, T.
    Moratis, K.
    Hatzopoulos, Z.
    Pelekanos, N. T.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (11)