STAR-GALAXY CLASSIFICATION USING MACHINE LEARNING ALGORITHMS AND DEEP LEARNING

被引:0
|
作者
Savyanavar, Amit Sadanand [1 ]
Mhala, Nikhil [1 ]
Sutar, Shiv H. [1 ]
机构
[1] Dr Vishwanath Karad MIT World Peace Univ, Sch Comp Engn & Technol, Pune, India
关键词
Cosmology; star-galaxy classification; Machine Learning; Convolution Neural Network;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cosmology is the study of the universe comprising stars and galaxies. Advancement in the telescope has made it possible to capture high -resolution images, which can be analysed using machine learning (ML) algorithms. This paper classifies the star galaxy dataset into two classes: star and galaxy using ML algorithms and compares their classification performance. It is observed that random forest provides better accuracy of 78% as compared to other ML classifiers. Further to improve the classification accuracy, we proposed a CNN (Convolution Neural Network) model and achieved an accuracy of 92.44%. Since the CNN model itself extracts the characteristics, it exhibits superior classification accuracy.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 50 条
  • [31] A comparative study of machine learning and deep learning algorithms for padel tennis shot classification
    Guillermo Cartes Domínguez
    Evelia Franco Álvarez
    Alejandro Tapia Córdoba
    Daniel Gutiérrez Reina
    [J]. Soft Computing, 2023, 27 : 12367 - 12385
  • [32] Land Use/Land Cover Classification Using Machine Learning and Deep Learning Algorithms for EuroSAT Dataset - A Review
    Loganathan, Agilandeeswari
    Koushmitha, Suri
    Arun, Yerru Nanda Krishna
    [J]. INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 1363 - 1374
  • [33] Zonda wind classification using machine learning algorithms
    Otero, Federico
    Araneo, Diego
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (S1) : E342 - E353
  • [34] Classification of Cardiac Arrhythmias Using Machine Learning Algorithms
    Garcia-Aquino, Christian
    Mujica-Vargas, Dante
    Matuz-Cruz, Manuel
    [J]. TELEMATICS AND COMPUTING, WITCOM 2021, 2021, 1430 : 174 - 185
  • [35] Liver Diseases Classification Using Machine Learning Algorithms
    Jovovic, Ivan
    Grebovic, Marko
    Pokvic, Lejla Gurbeta
    Popovic, Tomo
    Cakic, Stevan
    [J]. MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 585 - 593
  • [36] Classification of Swallowing Foods Using Machine Learning Algorithms
    Lim, Ji Hyun
    Djuric, Petar M.
    Stanacevic, Milutin
    [J]. INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1571 - 1574
  • [37] Water quality classification using machine learning algorithms
    Nasir, Nida
    Kansal, Afreen
    Alshaltone, Omar
    Barneih, Feras
    Sameer, Mustafa
    Shanableh, Abdallah
    Al-Shamma'a, Ahmed
    [J]. JOURNAL OF WATER PROCESS ENGINEERING, 2022, 48
  • [38] Protostellar classification using supervised machine learning algorithms
    O. Miettinen
    [J]. Astrophysics and Space Science, 2018, 363
  • [39] Classification of Customer Reviews Using Machine Learning Algorithms
    Noori, Behrooz
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (08) : 567 - 588
  • [40] Classification of Logging Data Using Machine Learning Algorithms
    Mukhamediev, Ravil
    Kuchin, Yan
    Yunicheva, Nadiya
    Kalpeyeva, Zhuldyz
    Muhamedijeva, Elena
    Gopejenko, Viktors
    Rystygulov, Panabek
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):