Learning Graph Enhanced Spatial-Temporal Coherence for Video Anomaly Detection

被引:8
|
作者
Cheng, Kai [1 ]
Liu, Yang [1 ]
Zeng, Xinhua [1 ]
机构
[1] Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China
关键词
Optical signal processing; Decoding; Benchmark testing; Task analysis; Optical computing; Coherence; Predictive models; Video anomaly detection; unsupervised learning; spatial-temporal attention; deep auto-encoder; graph network; NETWORK;
D O I
10.1109/LSP.2023.3261138
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video Anomaly Detection (VAD) is a critical yet challenging task in the signal processing community. Since part abnormal events cannot be detected by analyzing spatial or temporal information alone, learning spatial-temporal coherence has been proven the key to effective VAD. To this end, we propose a Graph Enhanced Spatial-Temporal Attention (GESTA) to address unsupervised VAD by learning the spatial-temporal coherence of normal events. Firstly, we propose a Dynamic Graph Recurrent Neural Network (DGRNN) to extract the motion patterns. Then, we propose a Spatial-Temporal Attention Module (STAM) to better model spatial-temporal coherence by integrating the prototypical spatial and temporal information. Finally, the fused spatial-temporal features are fed into the decoder to predict future frames. In testing phase, the anomaly with irregular information will result in poor prediction results. Experiments on three benchmarks demonstrate that our GESTA performs comparably to the state-of-the-art methods, and extensive analysis proves the effectiveness of DGRNN and STAM.
引用
收藏
页码:314 / 318
页数:5
相关论文
共 50 条
  • [1] Spatial-temporal graph attention network for video anomaly detection
    Chen, Haoyang
    Mei, Xue
    Ma, Zhiyuan
    Wu, Xinhong
    Wei, Yachuan
    [J]. IMAGE AND VISION COMPUTING, 2023, 131
  • [2] Exploiting Spatial-temporal Correlations for Video Anomaly Detection
    Zhao, Mengyang
    Liu, Yang
    Liu, Jing
    Zeng, Xinhua
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1727 - 1733
  • [3] Learning Hierarchical Spatial-Temporal Graph Representations for Robust Multivariate Industrial Anomaly Detection
    Yang, Jingyu
    Yue, Zuogong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7624 - 7635
  • [4] LEARNING TASK-SPECIFIC REPRESENTATION FOR VIDEO ANOMALY DETECTION WITH SPATIAL-TEMPORAL ATTENTION
    Liu, Yang
    Liu, Jing
    Zhu, Xiaoguang
    Wei, Donglai
    Huang, Xiaohong
    Song, Liang
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2190 - 2194
  • [5] Spatial-Temporal Cascade Autoencoder for Video Anomaly Detection in Crowded Scenes
    Li, Nanjun
    Chang, Faliang
    Liu, Chunsheng
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 203 - 215
  • [6] Automatic Traffic Anomaly Detection on the Road Network with Spatial-Temporal Graph Neural Network Representation Learning
    Zhang, Hengyuan
    Zhao, Suyao
    Liu, Ruiheng
    Wang, Wenlong
    Hong, Yixin
    Hu, Runjiu
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [7] Correlation-Aware Spatial-Temporal Graph Learning for Multivariate Time-Series Anomaly Detection
    Zheng, Yu
    Koh, Huan Yee
    Jin, Ming
    Chi, Lianhua
    Phan, Khoa T.
    Pan, Shirui
    Chen, Yi-Ping Phoebe
    Xiang, Wei
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11802 - 11816
  • [8] Video summarization by spatial-temporal graph optimization
    Lu, S
    Lyu, MR
    King, I
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, 2004, : 197 - 200
  • [9] Interpretable Spatial-Temporal Graph Convolutional Network for System Log Anomaly Detection
    Xu, Rucong
    Li, Yun
    [J]. ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [10] Memory-Augmented Spatial-Temporal Consistency Network for Video Anomaly Detection
    Li, Zhangxun
    Zhao, Mengyang
    Zeng, Xinhua
    Wang, Tian
    Pang, Chengxin
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VI, 2024, 14430 : 95 - 107