Memory-Augmented Spatial-Temporal Consistency Network for Video Anomaly Detection

被引:0
|
作者
Li, Zhangxun [1 ]
Zhao, Mengyang [1 ]
Zeng, Xinhua [1 ]
Wang, Tian [2 ,3 ]
Pang, Chengxin [4 ]
机构
[1] Fudan Univ, Acad Engn & Technol, Shanghai, Peoples R China
[2] Beihang Univ, Inst Artificial Intelligence, SKLSDE, Beijing, Peoples R China
[3] Zhongguancun Lab, Beijing, Peoples R China
[4] Shanghai Univ Elect Power, Sch Elect & Informat Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Video anomaly detection; Spatial-temporal consistency; Unified spatiotemporal representation; Memory network;
D O I
10.1007/978-981-99-8537-1_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video anomaly detection (VAD) in intelligent surveillance systems is a crucial yet highly challenging task. Since appearance and motion information is vital for identifying anomalies, existing unsupervised VAD methods usually learn normality from them. However, these approaches tend to consider appearance and motion separately or simply integrate them while ignoring the consistency between them, resulting in sub-optimal performance. To address this problem, we propose a Memory-Augmented Spatial-Temporal Consistency Network, aiming to model the latent consistency between spatial appearance and temporal motion by learning the unified spatiotemporal representation. Additionally, we introduce a spatial-temporal memory fusion module to record spatial and temporal prototypes of regular patterns from the unified spatiotemporal representation, increasing the gap between normal and abnormal events in the feature space. Experimental results on three benchmarks demonstrate the effectiveness of the spatial-temporal consistency for VAD tasks. Our method performs comparably to the stateof-the-art methods with AUCs of 97.6%, 89.3%, and 73.3% on the UCSD Ped2, CUHK Avenue, and ShanghaiTech datasets, respectively.
引用
收藏
页码:95 / 107
页数:13
相关论文
共 50 条
  • [1] Memory-augmented appearance-motion network for video anomaly detection
    Wang, Le
    Tian, Junwen
    Zhou, Sanping
    Shi, Haoyue
    Hua, Gang
    [J]. PATTERN RECOGNITION, 2023, 138
  • [2] A Cognitive Memory-Augmented Network for Visual Anomaly Detection
    Wang, Tian
    Xu, Xing
    Shen, Fumin
    Yang, Yang
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (07) : 1296 - 1307
  • [3] A Cognitive Memory-Augmented Network for Visual Anomaly Detection
    Tian Wang
    Xing Xu
    Fumin Shen
    Yang Yang
    [J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (07) : 1296 - 1307
  • [4] Spatial-temporal graph attention network for video anomaly detection
    Chen, Haoyang
    Mei, Xue
    Ma, Zhiyuan
    Wu, Xinhong
    Wei, Yachuan
    [J]. IMAGE AND VISION COMPUTING, 2023, 131
  • [5] Network Anomaly Detection Using Memory-Augmented Deep Autoencoder
    Min, Byeongjun
    Yoo, Jihoon
    Kim, Sangsoo
    Shin, Dongil
    Shin, Dongkyoo
    [J]. IEEE ACCESS, 2021, 9 : 104695 - 104706
  • [6] Research on Video Anomaly Detection Based on Cascaded Memory-augmented Autoencoder
    Zhang, Lin
    Chen, Zhao-Bo
    Ma, Xiao-Xuan
    Zhang, Fan-Bo
    Li, Ze-Hui
    Shan, Xian-Ying
    [J]. Journal of Computers (Taiwan), 2023, 34 (05) : 229 - 241
  • [7] Exploiting Spatial-temporal Correlations for Video Anomaly Detection
    Zhao, Mengyang
    Liu, Yang
    Liu, Jing
    Zeng, Xinhua
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1727 - 1733
  • [8] Memory-Augmented Insider Threat Detection with Temporal-Spatial Fusion
    Li, Dongyang
    Yang, Lin
    Zhang, Hongguang
    Wang, Xiaolei
    Ma, Linru
    [J]. SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [9] Memory-Augmented Generative Adversarial Networks for Anomaly Detection
    Yang, Ziyi
    Zhang, Teng
    Bozchalooi, Iman Soltani
    Darve, Eric
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2324 - 2334
  • [10] Hyperspectral anomaly detection via memory-augmented autoencoders
    Zhao, Zhe
    Sun, Bangyong
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1274 - 1287