Learning Graph Enhanced Spatial-Temporal Coherence for Video Anomaly Detection

被引:8
|
作者
Cheng, Kai [1 ]
Liu, Yang [1 ]
Zeng, Xinhua [1 ]
机构
[1] Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China
关键词
Optical signal processing; Decoding; Benchmark testing; Task analysis; Optical computing; Coherence; Predictive models; Video anomaly detection; unsupervised learning; spatial-temporal attention; deep auto-encoder; graph network; NETWORK;
D O I
10.1109/LSP.2023.3261138
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video Anomaly Detection (VAD) is a critical yet challenging task in the signal processing community. Since part abnormal events cannot be detected by analyzing spatial or temporal information alone, learning spatial-temporal coherence has been proven the key to effective VAD. To this end, we propose a Graph Enhanced Spatial-Temporal Attention (GESTA) to address unsupervised VAD by learning the spatial-temporal coherence of normal events. Firstly, we propose a Dynamic Graph Recurrent Neural Network (DGRNN) to extract the motion patterns. Then, we propose a Spatial-Temporal Attention Module (STAM) to better model spatial-temporal coherence by integrating the prototypical spatial and temporal information. Finally, the fused spatial-temporal features are fed into the decoder to predict future frames. In testing phase, the anomaly with irregular information will result in poor prediction results. Experiments on three benchmarks demonstrate that our GESTA performs comparably to the state-of-the-art methods, and extensive analysis proves the effectiveness of DGRNN and STAM.
引用
收藏
页码:314 / 318
页数:5
相关论文
共 50 条
  • [31] Unsupervised dam anomaly detection with spatial-temporal variational autoencoder
    Shu, Xiaosong
    Bao, Tengfei
    Zhou, Yuhang
    Xu, Ruichen
    Li, Yangtao
    Zhang, Kang
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (01): : 39 - 55
  • [32] Spatial-temporal Stream Anomaly Detection Based on Bayesian Fusion
    Chen Ying
    He Dandan
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (05) : 1137 - 1144
  • [33] Two-Stream Spatial-Temporal Auto-Encoder With Adversarial Training for Video Anomaly Detection
    Guo, Biao
    Liu, Mingrui
    He, Qian
    Jiang, Ming
    [J]. IEEE ACCESS, 2024, 12 : 125881 - 125889
  • [34] STGL: Spatial-Temporal Graph Representation and Learning for Visual Tracking
    Jiang, Bo
    Zhang, Yuan
    Luo, Bin
    Cao, Xiaochun
    Tang, Jin
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2162 - 2171
  • [35] Towards Dynamic Spatial-Temporal Graph Learning: A Decoupled Perspective
    Wang, Binwu
    Wang, Pengkun
    Zhang, Yundong
    Wang, Xu
    Zhou, Zhengyang
    Bai, Lei
    Yang, Wang
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 9089 - 9097
  • [36] Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection
    Luo, Weixin
    Liu, Wen
    Gao, Shenghua
    [J]. NEUROCOMPUTING, 2021, 444 : 332 - 337
  • [37] Partitioning Leakage Detection in Water Distribution Systems: A Specialized Deep Learning Framework Enhanced by Spatial-Temporal Graph Convolutional Networks
    Mu, Tianwei
    Zhang, Chunzheng
    Huang, Manhong
    Ning, Baokuan
    Wang, Junxiang
    [J]. ACS ES&T WATER, 2024, 4 (08): : 3453 - 3463
  • [38] Learning a spatial-temporal texture transformer network for video inpainting
    Ma, Pengsen
    Xue, Tao
    [J]. FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [39] Slow Video Detection Based on Spatial-Temporal Feature Representation
    Ma, Jianyu
    Yao, Haichao
    Ni, Rongrong
    Zhao, Yao
    [J]. PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 298 - 309
  • [40] ISTVT: Interpretable Spatial-Temporal Video Transformer for Deepfake Detection
    Zhao, Cairong
    Wang, Chutian
    Hu, Guosheng
    Chen, Haonan
    Liu, Chun
    Tang, Jinhui
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1335 - 1348