On the solvability of the indefinite Hamburger moment problem

被引:0
|
作者
Hu, Yongjian [1 ]
Hao, Huifeng [2 ]
Zhan, Xuzhou [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Hebei Univ Engn, Dept Stat, Handan 056038, Peoples R China
[3] Beijing Normal Univ Zhuhai, Dept Math, Zhuhai 519087, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 12期
关键词
generalized Nevanlinna function; infinite Hamburger moment problem; Hankel matrix; characteristic degree; characteristic polynomial quadruple; quasidirect decomposition; McMillan degree; RATIONAL INTERPOLATION PROBLEM; HANKEL; BEZOUTIANS;
D O I
10.3934/math.20231535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a new approach for the solvability of the indefinite Hamburger moment problem in the class of generalized Nevanlinna functions with a given negative index, which is more algebraic and completely different from the existing method [8] based on the step-by-step Schur algorithm. As a by-product of this approach, we simultaneously obtain a concrete rational solution of such an indefinite Hamburger moment problem when the solvability conditions are met. The basic strategy focuses on the structural characteristics of the Hankel matrix and the relation among the Hankel, Loewner, Bezout and some other structured matrices.
引用
收藏
页码:30023 / 30037
页数:15
相关论文
共 50 条
  • [31] MAXIMUM-ENTROPY IN THE FINITE STIELTJES AND HAMBURGER MOMENT PROBLEM
    FRONTINI, M
    TAGLIANI, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (12) : 6748 - 6756
  • [32] Hamburger matrix moment problem with mass constraints: The nondegenerate case
    Hu, Yong-Jian
    Song, Yan-Ping
    [J]. PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 71 - 75
  • [33] THE NEVANLINNA-TYPE FORMULA FOR THE MATRIX HAMBURGER MOMENT PROBLEM
    Zagorodnyuk, S. M.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2012, 18 (04): : 387 - 400
  • [34] Laurent-Jacobi matrices and the strong hamburger moment problem
    Hendriksen, E
    Nijhuis, C
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) : 119 - 132
  • [35] Truncated Hamburger moment problem for an operator measure with compact support
    Arlinskii, Yury
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (14-15) : 1677 - 1695
  • [36] α-REGULAR INDEFINITE STIELTJES MOMENT PROBLEM AND DARBOUX TRANSFORMATION
    Kovalyov, Ivan
    Lebedeva, Elena
    Stakhova, Olena
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (04): : 353 - 369
  • [37] FULL INDEFINITE STIELTJES MOMENT PROBLEM AND PADE APPROXIMANTS
    Derkach, Volodymyr
    Kovalyov, Ivan
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (01): : 1 - 26
  • [38] On aminimal solution for the indefinite multidimensional truncated moment problem
    Kimsey, David P.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [39] Hamburger moment sequences and their moment subsequences
    Aryal, Saroj
    Choi, Hayoung
    Jafari, Farhad
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (09): : 1838 - 1851
  • [40] On degenerate Hamburger moment problem and extensions of nonnegative Hankel block matrices
    Bolotnikov, V
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 25 (03) : 253 - 276