α-REGULAR INDEFINITE STIELTJES MOMENT PROBLEM AND DARBOUX TRANSFORMATION

被引:0
|
作者
Kovalyov, Ivan [1 ]
Lebedeva, Elena [2 ]
Stakhova, Olena [3 ]
机构
[1] Dragomanov Natl Pedag Univ, Dept Math, Pirogova 9, UA-01601 Kiev, Ukraine
[2] St Petersburg State Univ, Math & Mech Fac, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
[3] Vinnytsia State Pedag Univ, Ostrozkogo 32, UA-21001 Vinnytsia, Ukraine
来源
关键词
moment problem; Stieltjes polynomials; Darboux transformation; m-function; monic generalized Jacobi matrix; triangular factorization; HERMITIAN OPERATORS; GENERALIZED RESOLVENTS;
D O I
10.31392/MFAT-npu26_4.2021.09
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence of the real numbers s = {s(i)}(l)(i=0) is associated with the some indefinite Stieltjes moment problem and generalized Jacobi matrices. The relation between the alpha-regular indefinite Stieltjes moment problem and shifted Darboux transformation of the generalized Jacobi matrix is studied. The new formulas for the Stieltjes polynomials with the shift are found and one are used to obtain the description of the solutions of the alpha-regular indefinite Stieltjes moment problem.
引用
收藏
页码:353 / 369
页数:17
相关论文
共 50 条