A Second-Order Finite-Difference Method for Derivative-Free Optimization

被引:1
|
作者
Chen, Qian [1 ]
Wang, Peng [1 ,2 ]
Zhu, Detong [3 ]
机构
[1] Hainan Normal Univ, Math & Stat Coll, Haikou 570203, Hainan, Peoples R China
[2] Hainan Normal Univ, Key Lab, Minist Educ, Haikou 570203, Hainan, Peoples R China
[3] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
GRADIENT; CONVEX;
D O I
10.1155/2024/1947996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Optimized high-order finite-difference modeling of second-order strain gradient wave field effects
    Zi-hao Hu
    Hai-xin Feng
    Zhi-chun Zhou
    You-ming Li
    Zhi-yang Wang
    Applied Geophysics, 2023, 20 : 278 - 290
  • [42] Improved exploitation of higher order smoothness in derivative-free optimization
    Novitskii, Vasilii
    Gasnikov, Alexander
    OPTIMIZATION LETTERS, 2022, 16 (07) : 2059 - 2071
  • [43] New Subspace Method for Unconstrained Derivative-Free Optimization
    Kimiaei, Morteza
    Neumaier, Arnold
    Faramarzi, Parvaneh
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2023, 49 (04):
  • [44] Improved exploitation of higher order smoothness in derivative-free optimization
    Vasilii Novitskii
    Alexander Gasnikov
    Optimization Letters, 2022, 16 : 2059 - 2071
  • [45] Decomposition in derivative-free optimization
    Kaiwen Ma
    Nikolaos V. Sahinidis
    Sreekanth Rajagopalan
    Satyajith Amaran
    Scott J Bury
    Journal of Global Optimization, 2021, 81 : 269 - 292
  • [46] Efficient derivative-free optimization
    Belitz, Paul
    Bewley, Thomas
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5607 - 5612
  • [47] Decomposition in derivative-free optimization
    Ma, Kaiwen
    Sahinidis, Nikolaos V.
    Rajagopalan, Sreekanth
    Amaran, Satyajith
    Bury, Scott J.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 81 (02) : 269 - 292
  • [48] SURVEY OF DERIVATIVE-FREE OPTIMIZATION
    Xi, Min
    Sun, Wenyu
    Chen, Jun
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 537 - 555
  • [49] Derivative-free optimization methods
    Larson, Jeffrey
    Menickelly, Matt
    Wild, Stefan M.
    ACTA NUMERICA, 2019, 28 : 287 - 404
  • [50] Derivative-Free and Blackbox Optimization
    Huyer, W.
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (02): : 480 - 480