A Second-Order Finite-Difference Method for Derivative-Free Optimization

被引:1
|
作者
Chen, Qian [1 ]
Wang, Peng [1 ,2 ]
Zhu, Detong [3 ]
机构
[1] Hainan Normal Univ, Math & Stat Coll, Haikou 570203, Hainan, Peoples R China
[2] Hainan Normal Univ, Key Lab, Minist Educ, Haikou 570203, Hainan, Peoples R China
[3] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
GRADIENT; CONVEX;
D O I
10.1155/2024/1947996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Monotone Finite-Difference Schemes of Second-Order Accuracy for Quasilinear Parabolic Equations with Mixed Derivatives
    P. P. Matus
    L. M. Hieu
    D. Pylak
    Differential Equations, 2019, 55 : 424 - 436
  • [32] Monotone Finite-Difference Schemes of Second-Order Accuracy for Quasilinear Parabolic Equations with Mixed Derivatives
    Matus, P. P.
    Hieu, L. M.
    Pylak, D.
    DIFFERENTIAL EQUATIONS, 2019, 55 (03) : 424 - 436
  • [33] INTERIOR ESTIMATES FOR SECOND-ORDER DIFFERENCES OF SOLUTIONS OF FINITE-DIFFERENCE ELLIPTIC BELLMAN'S EQUATIONS
    Krylov, N. V.
    MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1463 - 1487
  • [34] Stable second-order finite-difference methods for linear initial-boundary-value problems
    George, K
    Twizell, EH
    APPLIED MATHEMATICS LETTERS, 2006, 19 (02) : 146 - 154
  • [35] Discrete gradient method:: Derivative-free method for nonsmooth optimization
    Bagirov, A. M.
    Karasoezen, B.
    Sezer, M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (02) : 317 - 334
  • [36] HIGH-ORDER NARROW STENCIL FINITE-DIFFERENCE APPROXIMATIONS OF SECOND-ORDER DERIVATIVES INVOLVING VARIABLE COEFFICIENTS
    Kamakoti, Ramji
    Pantano, Carlos
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06): : 4222 - 4243
  • [37] Optimized High-order Finite-difference Modeling of Second-order Strain Gradient Wave Field Effects
    Hu, Zi-hao
    Feng, Hai-xin
    Zhou, Zhi-chun
    Li, You-ming
    Whang, Zhi-yang
    APPLIED GEOPHYSICS, 2023, 20 (03) : 278 - 290
  • [38] Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization
    A. M. Bagirov
    B. Karasözen
    M. Sezer
    Journal of Optimization Theory and Applications, 2008, 137 : 317 - 334
  • [39] StepDIRECT - A Derivative-Free Optimization Method for Stepwise Functions
    Phan, Dzung T.
    Liu, Hongsheng
    Nguyen, Lam M.
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 477 - 485
  • [40] A derivative-free method for linearly constrained nonsmooth optimization
    Bagirov, Adil M.
    Ghosh, Moumita
    Webb, Dean
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2006, 2 (03) : 319 - 338