A Second-Order Finite-Difference Method for Derivative-Free Optimization

被引:1
|
作者
Chen, Qian [1 ]
Wang, Peng [1 ,2 ]
Zhu, Detong [3 ]
机构
[1] Hainan Normal Univ, Math & Stat Coll, Haikou 570203, Hainan, Peoples R China
[2] Hainan Normal Univ, Key Lab, Minist Educ, Haikou 570203, Hainan, Peoples R China
[3] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
GRADIENT; CONVEX;
D O I
10.1155/2024/1947996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Derivative-Free Finite-Difference Homeier Method for Nonlinear Models
    Al-Shorman, Yanal
    Said Solaiman, Obadah
    Hashim, Ishak
    Springer Proceedings in Mathematics and Statistics, 2023, 414 : 105 - 112
  • [2] Comparison of Derivative-free Method and Finite-difference Method for Singular Systems
    Buhmiler, Sandra
    Rapajic, Sanja
    Medic, Slavica
    Durakovic, Natasa
    Grbic, Tatjana
    ACTA POLYTECHNICA HUNGARICA, 2021, 18 (09) : 49 - 67
  • [3] ADAPTIVE FINITE-DIFFERENCE INTERVAL ESTIMATION FOR NOISY DERIVATIVE-FREE OPTIMIZATION
    Shi, Hao-Jun Michael
    Xie, Yuchen
    Xuan, Melody Qiming
    Nocedal, Jorge
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : A2302 - A2321
  • [4] A second-order finite-difference method for the Falkner-Skan equation
    Asaithambi, A
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (03) : 779 - 786
  • [5] A Second-Order Finite-Difference Method for Compressible Fluids in Domains with Moving Boundaries
    Chertock, Alina
    Coco, Armando
    Kurganov, Alexander
    Russo, Giovanni
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (01) : 230 - 263
  • [6] A linearly convergent derivative-free descent method for the second-order cone complementarity problem
    Pan, Shaohua
    Chen, Jein-Shan
    OPTIMIZATION, 2010, 59 (08) : 1173 - 1197
  • [7] On second-order mimetic and conservative finite-difference discretization schemes
    Rojas, S.
    Guevara-Jordan, J. M.
    REVISTA MEXICANA DE FISICA E, 2008, 54 (02): : 141 - 145
  • [8] THE WEIGHTED ERROR ESTIMATE OF THE FINITE-DIFFERENCE SCHEME FOR A SECOND-ORDER PARTIAL DIFFERENTIAL EQUATION WITH A MIXED DERIVATIVE
    Mayko, N. V.
    Ryabichev, V. L.
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2021, 3 (137): : 99 - 112
  • [9] A finite-difference lattice Boltzmann method with second-order accuracy of time and space for incompressible flow
    Chen, Xinmeng
    Chai, Zhenhua
    Wang, Huili
    Shi, Baochang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (12) : 3066 - 3081
  • [10] On the numerical performance of finite-difference-based methods for derivative-free optimization
    Shi, Hao-Jun Michael
    Xuan, Melody Qiming
    Oztoprak, Figen
    Nocedal, Jorge
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (02): : 289 - 311