Multispectral Feature Fusion for Deep Object Detection on Embedded NVIDIA Platforms

被引:0
|
作者
Kotrba, Thomas [1 ,2 ]
Lechner, Martin [1 ,2 ]
Sarwar, Omair [2 ]
Jantsch, Axel [1 ]
机构
[1] TU Wien, Inst Comp Technol, Christian Doppler Lab Embedded Machine Learning, Vienna, Austria
[2] Mission Embedded GmbH, Vienna, Austria
关键词
multispectral fusion; deep object detection; embedded hardware; NVIDIA Jetson;
D O I
10.23919/DATE56975.2023.10137241
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multispectral images can improve object detection systems' performance due to their complementary information, especially in adverse environmental conditions. To use multispectral image data in deep-learning-based object detectors, a fusion of the information from the individual spectra, e.g., inside the neural network, is necessary. This paper compares the impact of general fusion schemes in the backbone of the YOLOv4 object detector. We focus on optimizing these fusion approaches for an NVIDIA Jetson AGX Xavier and elaborating on their impact on the device in physical metrics. We optimize six different fusion architectures in the network's backbone for the TensorRT framework and compare their inference time, power consumption, and object detection performance. Our results show that multispectral fusion approaches with little design effort can benefit resource usage and object detection metrics compared to individual networks.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Camouflage Object Detection Based on Feature Fusion and Edge Detection
    Ding, Cheng
    Bai, Xueqiong
    Lv, Yong
    Liu, Yang
    Niu, Chunhui
    Liu, Xin
    ACTA PHOTONICA SINICA, 2024, 53 (08)
  • [32] DEEP FEATURE COMPRESSION FOR COLLABORATIVE OBJECT DETECTION
    Choi, Hyomin
    Bajic, Ivan V.
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3743 - 3747
  • [33] Deep Feature Pyramid Reconfiguration for Object Detection
    Kong, Tao
    Sun, Fuchun
    Huang, Wenbing
    Liu, Huaping
    COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 172 - 188
  • [34] Deep Semantic Feature Detection from Multispectral Satellite Images
    Balti, Hanen
    Mellouli, Nedra
    Chebbi, Imen
    Farah, Imed
    Lamolle, Myriam
    KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR, 2019, : 458 - 466
  • [35] Multimodal Deep Learning-based Feature Fusion for Object Detection in Remote Sensing Images
    Yin, Shoulin
    Wang, Qunming
    Wang, Liguo
    Ivanovic, Mirjana
    Li, Hang
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2025, 22 (01) : 327 - 344
  • [36] An object detection algorithm based on deep learning and salient feature fusion for roadside surveillance camera
    He, Yang
    Jin, Lisheng
    Wang, Huanhuan
    Sun, Xinyu
    Huo, Zhen
    Wang, Guangqi
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2025,
  • [37] MULTISPECTRAL FUSION FOR OBJECT DETECTION WITH CYCLIC FUSE-AND-REFINE BLOCKS
    Zhang, Heng
    Fromont, Elisa
    Lefevre, Sebastien
    Avignon, Bruno
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 276 - 280
  • [38] FFAVOD: Feature fusion architecture for video object detection
    Perreault, Hughes
    Bilodeau, Guillaume-Alexandre
    Saunier, Nicolas
    Heritier, Maguelonne
    PATTERN RECOGNITION LETTERS, 2021, 151 : 294 - 301
  • [39] Feature extraction and fusion network for salient object detection
    Dai, Chao
    Pan, Chen
    He, Wei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (23) : 33955 - 33969
  • [40] Dynamic Feature Fusion for Visual Object Detection and Segmentation
    Hu, Yu-Ming
    Xie, Jia-Jin
    Shuai, Hong-Han
    Huang, Ching-Chun
    Chou, I. -Fan
    Cheng, Wen-Huang
    2023 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, ICCE, 2023,