Multispectral Feature Fusion for Deep Object Detection on Embedded NVIDIA Platforms

被引:0
|
作者
Kotrba, Thomas [1 ,2 ]
Lechner, Martin [1 ,2 ]
Sarwar, Omair [2 ]
Jantsch, Axel [1 ]
机构
[1] TU Wien, Inst Comp Technol, Christian Doppler Lab Embedded Machine Learning, Vienna, Austria
[2] Mission Embedded GmbH, Vienna, Austria
关键词
multispectral fusion; deep object detection; embedded hardware; NVIDIA Jetson;
D O I
10.23919/DATE56975.2023.10137241
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multispectral images can improve object detection systems' performance due to their complementary information, especially in adverse environmental conditions. To use multispectral image data in deep-learning-based object detectors, a fusion of the information from the individual spectra, e.g., inside the neural network, is necessary. This paper compares the impact of general fusion schemes in the backbone of the YOLOv4 object detector. We focus on optimizing these fusion approaches for an NVIDIA Jetson AGX Xavier and elaborating on their impact on the device in physical metrics. We optimize six different fusion architectures in the network's backbone for the TensorRT framework and compare their inference time, power consumption, and object detection performance. Our results show that multispectral fusion approaches with little design effort can benefit resource usage and object detection metrics compared to individual networks.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] TFGNet: Traffic Salient Object Detection Using a Feature Deep Interaction and Guidance Fusion
    Jia, Ning
    Sun, Yougang
    Liu, Xianhui
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (03) : 3020 - 3030
  • [22] Genetic Feature Fusion for Object Skeleton Detection
    Qiao, Yang
    Tian, Yunjie
    Liu, Yue
    Jiao, Jianbin
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021 (2021)
  • [23] Improving Object Detection with Feature Fusion Methods
    Cui, Yuning
    Shi, Dianxi
    Zhang, Yongjun
    Sun, Qianchong
    Xu, Huachi
    Jing, Luoxi
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2022, 31 (07)
  • [24] Feature fusion for object detection at one map
    Xi, Xing
    Wu, Yuanqing
    Xia, Canming
    He, Shenghuang
    IMAGE AND VISION COMPUTING, 2022, 123
  • [25] Adaptive Feature Fusion for Small Object Detection
    Zhang, Qi
    Zhang, Hongying
    Lu, Xiuwen
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [26] Enhanced Codebook Model and Fusion for Object Detection with Multispectral Images
    Liu, Rongrong
    Ruichek, Yassine
    El Bagdouri, Mohammed
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2018, 2018, 11182 : 225 - 232
  • [27] YOLO-MS: Multispectral Object Detection via Feature Interaction and Self-Attention Guided Fusion
    Xie, Yumin
    Zhang, Langwen
    Yu, Xiaoyuan
    Xie, Wei
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (04) : 2132 - 2143
  • [28] A MULTISPECTRAL-INFRARED OBJECT DETECTION METHOD BASED ON CROSS-MODALITY IMAGE FEATURE FILTERING FUSION
    Liu, Ze
    Su, Nan
    Zhao, Chunhui
    Yan, Yiming
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6823 - 6825
  • [29] Blackthorn: Latency Estimation Framework for CNNs on Embedded Nvidia Platforms
    Lechner, Martin
    Jantsch, Axel
    IEEE ACCESS, 2021, 9 : 110074 - 110084
  • [30] Object Specific Deep Feature for Face Detection
    Hou, Xianxu
    Zhu, Jiasong
    Sun, Ke
    Shen, Linlin
    Qiu, Guoping
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (05) : 1270 - 1277