Removing EOG Artifacts from the Resting State EEG Signal of Methamphetamine Addicts by ICA Algorithms

被引:0
|
作者
Zhan, Gege [1 ]
Su, Haolong [1 ]
Wang, Pengchao [1 ]
Niu, Lan [2 ]
Bin, Jianxiong [2 ]
Mu, Wei [1 ]
Zhang, Xueze [1 ]
Jiang, Haifeng [3 ,4 ]
Zhang, Lihua [1 ,2 ]
Kang, Xiaoyang [1 ,2 ,5 ,6 ]
机构
[1] Fudan Univ, Acad Engn & Technol,Shanghai Engn Res Ctr AI & Ro, Inst Metamed,MOE Frontiers Ctr Brain Sci,Minist E, Inst AI & Robot,State Key Lab Med Neurobiol,Lab N, Shanghai, Peoples R China
[2] Ji Hua Lab, Foshan, Guangdong, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Mental Ctr, Sch Med, Shanghai, Peoples R China
[4] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai, Peoples R China
[5] Fudan Univ, Yiwu Res Inst, Chengbei Rd, Yiwu City 322000, Zhejiang, Peoples R China
[6] Zhejiang Lab, Res Ctr Intelligent Sensing, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
EEG; Artifact removal; Independent component analysis (ICA); EOG;
D O I
10.1109/BCI57258.2023.10078556
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
EEG signal contains a wealth of information about brain activity, but the recording process is inevitably contaminated by EOG artifacts. An effective method to remove EOG artifacts can provide a guarantee for subsequent EEG analysis. In this paper, we compare the performance of four ICA algorithms in removing EOG artifacts from EEG signals of methamphetamine addicts. From the perspective of time domain and power spectral density, all the four algorithms can effectively remove the EOG artifacts without obvious difference. In terms of PSNR, MI and processing speed, FastICA algorithm can achieve higher processing speed and reconstruct signals better than the other three algorithms.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] An Automatic ICA-Based Method for Removing Artifacts from EEG Data Acquired during fMRI in Real Time
    Mayeli, Ahmad
    Zotev, Vadim
    Refai, Hazem
    Bodurka, Jerzy
    2015 41ST ANNUAL NORTHEAST BIOMEDICAL ENGINEERING CONFERENCE (NEBEC), 2015,
  • [32] Altered Resting State EEG Connectivity in Schizophrenia: An ICA Based Study
    Sharma, Ritu
    Jagannathan, Kanchana
    Stevens, Michael C.
    Calhoun, Vince D.
    von Pechmann, Deirdre F.
    Pearlson, Godfrey D.
    BIOLOGICAL PSYCHIATRY, 2010, 67 (09) : 257S - 257S
  • [33] A NONLINEAR ESTIMATION MODEL FOR ADAPTIVE MINIMIZATION OF EOG ARTIFACTS FROM EEG SIGNALS
    SADASIVAN, PK
    DUTT, DN
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1994, 36 (03): : 199 - 207
  • [34] Removal of EOG Artifacts from EEG Recordings Using Stationary Subspace Analysis
    Zeng, Hong
    Song, Aiguo
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [35] ICA on Sensor or Source Data: A Comparison Study in Deriving Resting State Networks from EEG
    Li, Chuang
    Yuan, Han
    Urbano, Diamond
    Cha, Yoon-Hee
    Ding, Lei
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 3604 - 3607
  • [36] A NEW ONLINE SYSTEM FOR REMOVING OCULAR ARTIFACTS FROM THE EEG
    IFEACHOR, EC
    JERVIS, BW
    ALLEN, E
    MORRIS, EL
    HUDSON, NR
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1986, 63 (03): : P35 - P35
  • [37] An approach to removing spatially uncorrelated artifacts from EEG recordings
    Masherov E.L.
    Volynsky P.E.
    Shekut'ev G.A.
    Human Physiology, 2009, 35 (4) : 502 - 512
  • [38] Subtraction of ocular and line artifacts from mental EEG based on ICA
    Zhou, Jin
    Zhou, Weidong
    Liu, Yang
    Pan, Yuqi
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, 2006, : 493 - +
  • [39] Dynamic changes of ICA-derived EEG functional connectivity in the resting state
    Chen, Jean-Lon
    Ros, Tomas
    Gruzelier, John H.
    HUMAN BRAIN MAPPING, 2013, 34 (04) : 852 - 868
  • [40] ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data
    Pruim, Raimon H. R.
    Mennes, Maarten
    van Rooij, Daan
    Llera, Alberto
    Buitelaar, Jan K.
    Beckmann, Christian F.
    NEUROIMAGE, 2015, 112 : 267 - 277