Removing EOG Artifacts from the Resting State EEG Signal of Methamphetamine Addicts by ICA Algorithms

被引:0
|
作者
Zhan, Gege [1 ]
Su, Haolong [1 ]
Wang, Pengchao [1 ]
Niu, Lan [2 ]
Bin, Jianxiong [2 ]
Mu, Wei [1 ]
Zhang, Xueze [1 ]
Jiang, Haifeng [3 ,4 ]
Zhang, Lihua [1 ,2 ]
Kang, Xiaoyang [1 ,2 ,5 ,6 ]
机构
[1] Fudan Univ, Acad Engn & Technol,Shanghai Engn Res Ctr AI & Ro, Inst Metamed,MOE Frontiers Ctr Brain Sci,Minist E, Inst AI & Robot,State Key Lab Med Neurobiol,Lab N, Shanghai, Peoples R China
[2] Ji Hua Lab, Foshan, Guangdong, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Mental Ctr, Sch Med, Shanghai, Peoples R China
[4] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai, Peoples R China
[5] Fudan Univ, Yiwu Res Inst, Chengbei Rd, Yiwu City 322000, Zhejiang, Peoples R China
[6] Zhejiang Lab, Res Ctr Intelligent Sensing, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
EEG; Artifact removal; Independent component analysis (ICA); EOG;
D O I
10.1109/BCI57258.2023.10078556
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
EEG signal contains a wealth of information about brain activity, but the recording process is inevitably contaminated by EOG artifacts. An effective method to remove EOG artifacts can provide a guarantee for subsequent EEG analysis. In this paper, we compare the performance of four ICA algorithms in removing EOG artifacts from EEG signals of methamphetamine addicts. From the perspective of time domain and power spectral density, all the four algorithms can effectively remove the EOG artifacts without obvious difference. In terms of PSNR, MI and processing speed, FastICA algorithm can achieve higher processing speed and reconstruct signals better than the other three algorithms.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Automatic Identification of Useful Independent Components with a View to Removing Artifacts from EEG Signal
    Huang, Hwa-Shan
    Pal, Nikhil R.
    Ko, Li-Wei
    Lin, Chin-Teng
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2646 - +
  • [22] Removal of ECG artifacts from EEG using ICA
    Zhou, WD
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 206 - 207
  • [23] Resting state EEG connectivity by frequency domain tomographic ICA
    Valdes-Sosa, P.
    Bringa-Vega, M. L.
    Bosch-Bayard, J.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2012, 85 (03) : 346 - 347
  • [24] MULTIVARIATE EMD BASED APPROACH TO EOG ARTIFACTS SEPARATION FROM EEG
    Molla, M. K. I.
    Tanaka, T.
    Rutkowski, T. M.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 653 - 656
  • [25] SEPARATION OF EOG ARTIFACTS FROM EEG SIGNALS USING BIVARIATE EMD
    Molla, Md. K. I.
    Tanaka, T.
    Rutkowski, T. M.
    Cichocki, A.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 562 - 565
  • [26] Deep learning denoising for EOG artifacts removal from EEG signals
    Mashhadi, Najmeh
    Khuzani, Abolfazl Zargari
    Heidari, Morteza
    Khaledyan, Donya
    2020 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC), 2020,
  • [27] Removing EOG artifact from the EEG: Adjusting for errors in the correction phase
    Croft, R
    Burgess, A
    Barry, RJ
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2000, 35 (01) : 63 - 63
  • [28] A novel algorithm for removing artifacts from EEG data
    Li, Yongcheng
    Wang, Po T.
    Vaidya, Mukta P.
    Liu, Charles Y.
    Slutzky, Marc W.
    Do, An H.
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 6014 - 6017
  • [29] NEW SPECTRAL DETECTION AND ELIMINATION TEST ALGORITHMS OF ECG AND EOG ARTIFACTS IN NEONATAL EEG RECORDINGS
    WITTE, H
    GLASER, S
    ROTHER, M
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1987, 25 (02) : 127 - 130
  • [30] Removing bleaching artifacts from voltage sensitive dye recordings with ICA
    Elham Fathiazar
    Gerrit Hilgen
    Jutta Kretzberg
    BMC Neuroscience, 14 (Suppl 1)