Pressure Effect on the Thermal Runaway Behaviors of Lithium-Ion Battery in Confined Space

被引:19
|
作者
Li, Yawen [1 ]
Jiang, Lihua [1 ]
Huang, Zonghou [1 ]
Jia, Zhuangzhuang [1 ]
Qin, Peng [1 ]
Wang, Qingsong [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery safety; Thermal runaway; Different pressures; Confined space; CATHODE MATERIALS; FIRE BEHAVIORS; GAS EVOLUTION; EXPLOSION; ABUSE; STATE; CELLS;
D O I
10.1007/s10694-022-01296-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As an advanced energy storage medium, lithium-ion batteries (LIBs) are being used in aircraft and other aviation fields owing their unique advantages. The thermal runaway (TR) behaviours of LIBs used in aircraft are more complicated and dangerous due to the special operating environments, such as low pressure and enclosed environments. Therefore, a special test platform was designed to study the effect of low pressure on the TR characteristics of 2.2 Ah 18,650 type LIBs in this work. Some critical parameters of TR were obtained, such as onset temperature of TR, maximum temperature, voltage drop time, pressure, and the explosion limit of gases, etc. The results show that with the pressure increasing, the TR onset temperature, maximum temperature, and pressure increase in the test chamber, and the voltage drop time postpones. In addition, the amount of released gas and the explosion limitation range of gases increase with the decrease of the initial pressure. This means it's easier to occur but with weaker hazard of TR at lower pressure. Besides, the SEM results reveal that deformation and structural damage of cathode materials, which is attributed to the increase of the large amount of gas released at the electrode material level. These results provide the basis for the safe application and storage of LIBs in a confined space under different pressures.
引用
收藏
页码:1137 / 1155
页数:19
相关论文
共 50 条
  • [21] Thermal Runaway Characteristics of a Large Format Lithium-Ion Battery Module
    Cheng, Ximing
    Li, Tao
    Ruan, Xusong
    Wang, Zhenpo
    ENERGIES, 2019, 12 (16)
  • [22] Research Progress on Thermal Runaway Protection of Lithium-Ion Power Battery
    Zhai, Jiawei
    Wang, Jiajun
    Lei, Zhiguo
    Current Materials Science, 2023, 16 (01): : 2 - 17
  • [23] Mitigating thermal runaway of lithium-ion battery through electrolyte displacement
    Shi, Yang
    Noelle, Daniel J.
    Wang, Meng
    Le, Anh V.
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Ying Shirley
    Fan, Jiang
    Wu, Dengguo
    Qiao, Yu
    APPLIED PHYSICS LETTERS, 2017, 110 (06)
  • [24] Versatile multiphysics model for thermal runaway estimation of a lithium-ion battery
    Kim, Jun-Hyeong
    Kwak, Eunji
    Jeong, Jinho
    Oh, Ki-Yong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 16550 - 16575
  • [25] A Review of Lithium-Ion Battery Thermal Runaway Modeling and Diagnosis Approaches
    Tran, Manh-Kien
    Mevawalla, Anosh
    Aziz, Attar
    Panchal, Satyam
    Xie, Yi
    Fowler, Michael
    PROCESSES, 2022, 10 (06)
  • [26] Multiparameter warning of lithium-ion battery overcharge-thermal runaway
    Wang, Jianfeng
    Chen, Bowei
    Li, Yuhan
    Hu, Ting
    Liu, Fen
    Shi, Mengyu
    Ren, Xutong
    Jia, Yongkai
    Li, Weihua
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [27] Numerical Study on the Inhibition Control of Lithium-Ion Battery Thermal Runaway
    Hu, Hao
    Xu, Xiaoming
    Sun, Xudong
    Li, Renzheng
    Zhang, Yangjun
    Fu, Jiaqi
    ACS OMEGA, 2020, 5 (29): : 18254 - 18261
  • [28] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):
  • [29] Computational Modelling of Thermal Runaway Propagation in Lithium-Ion Battery Systems
    Citarella, Martina
    Suzzi, Daniele
    Brunnsteiner, Bernhard
    Schiffbaenker, Paul
    Maier, Gernot
    Schneider, Juergen
    2019 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE (ITEC-INDIA), 2019,
  • [30] The critical characteristics and transition process of lithium-ion battery thermal runaway
    Huang, Peifeng
    Yao, Caixia
    Mao, Binbin
    Wang, Qingsong
    Sun, Jinhua
    Bai, Zhonghao
    ENERGY, 2020, 213