Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery

被引:63
|
作者
Liu, Jingjing [1 ]
Wang, Zhirong [1 ]
Gong, Junhui [1 ]
Liu, Kai [1 ]
Wang, Hao [1 ]
Guo, Linsheng [1 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Jiangsu Key Lab Urban & Ind Safety, Nanjing 210009, Jiangsu, Peoples R China
来源
MATERIALS | 2017年 / 10卷 / 03期
关键词
lithium-ion battery; thermal runaway; heating power; SOC; charging-discharging; STABILITY; SAFETY; ELECTROLYTES; CELLS;
D O I
10.3390/ma10030230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study addresses the effects of the SOC (State of Charge) and the charging-discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6W is the critical heating power for 40% SOC. With a 20Wconstant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Experimental Study on Thermal Runaway Process of 18650 Lithium-Ion Battery under Different Discharge Currents
    Li, Lun
    Ju, Xiaoyu
    Zhou, Xiaodong
    Peng, Yang
    Zhou, Zhizuan
    Cao, Bei
    Yang, Lizhong
    MATERIALS, 2021, 14 (16)
  • [2] Experimental Analysis of Thermal Runaway Propagation Risk within 18650 Lithium-Ion Battery Modules
    Zhong, Guobin
    Li, Huang
    Wang, Chao
    Xu, Kaiqi
    Wang, Qingsong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) : A1925 - A1934
  • [3] Effect of low temperature on thermal runaway and fire behaviors of 18650 lithium-ion battery: A comprehensive experimental study
    Kong, Depeng
    Zhao, Hengle
    Ping, Ping
    Zhang, Yue
    Wang, Gongquan
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 174 : 448 - 459
  • [4] Effect of Thermal Abuse Conditions on Thermal Runaway of NCA 18650 Cylindrical Lithium-Ion Battery
    Jeon, Minkyu
    Lee, Eunsong
    Park, Hyunwook
    Yoon, Hongsik
    Keel, Sangin
    BATTERIES-BASEL, 2022, 8 (10):
  • [5] Effect of discharge operation on thermal runaway incubation process of lithium-ion battery: An experimental study
    Hu, Jian
    Liu, Tong
    Wang, Xishi
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 185 : 25 - 35
  • [6] Influence of Aerogel Felt with Different Thickness on Thermal Runaway Propagation of 18650 Lithium-ion Battery
    Liu, Quanyi
    Zhu, Qian
    Zhu, Wentian
    Yi, Xiaoying
    ELECTROCHEMISTRY, 2022, 90 (08)
  • [7] Simulation study on thermal runaway suppression of 18650 lithium battery
    Qin, Jiaxing
    Zhao, Shengping
    Liu, Xing
    Liu, Yitao
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2020,
  • [8] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [9] Experimental study on the thermal management performance of immersion cooling for 18650 lithium-ion battery module
    Zhao, Luyao
    Tong, Jun
    Zheng, Minxue
    Chen, Mingyi
    Li, Wei
    Process Safety and Environmental Protection, 2024, 192 : 634 - 642
  • [10] Experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition
    Li, Huang
    Chen, Haodong
    Zhong, Guobin
    Wang, Yu
    Wang, Qingsong
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2019, 61 : 122 - 129