Quantum Monte Carlo Method in the Steady State

被引:16
|
作者
Erpenbeck, A. [1 ]
Gull, E. [1 ]
Cohen, G. [2 ,3 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Tel Aviv Univ, Raymond & Beverley Sackler Ctr Computat Mol & Mat, IL-6997801 Tel Aviv, Israel
[3] Tel Aviv Univ, Sch Chem, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
LIGHT-INDUCED SUPERCONDUCTIVITY; MEAN-FIELD THEORY; ANDERSON MODEL; MOTT TRANSITION; HUBBARD-MODEL; PHASE; TRANSPORT; FERMIONS; LATTICE;
D O I
10.1103/PhysRevLett.130.186301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a numerically exact steady-state inchworm Monte Carlo method for nonequilibrium quantum impurity models. Rather than propagating an initial state to long times, the method is directly formulated in the steady state. This eliminates any need to traverse the transient dynamics and grants access to a much larger range of parameter regimes at vastly reduced computational costs. We benchmark the method on equilibrium Green's functions of quantum dots in the noninteracting limit and in the unitary limit of the Kondo regime. We then consider correlated materials described with dynamical mean field theory and driven away from equilibrium by a bias voltage. We show that the response of a correlated material to a bias voltage differs qualitatively from the splitting of the Kondo resonance observed in bias-driven quantum dots.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [31] Simulation of quantum systems by the tomography Monte Carlo method
    Bogdanov, Yu. I.
    QUANTUM ELECTRONICS, 2007, 37 (12) : 1091 - 1096
  • [32] Inchworm Monte Carlo Method for Open Quantum Systems
    Cai, Zhenning
    Lu, Jianfeng
    Yang, Siyao
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (11) : 2430 - 2472
  • [33] Released-phase quantum Monte Carlo method
    Phys Rev E., 5-B pt B (6202):
  • [34] Variance minimization for variational quantum Monte Carlo method
    黄宏新
    曹泽星
    刘述斌
    Progress in Natural Science:Materials International, 1997, (05) : 39 - 43
  • [35] The geophysical inverse method based on quantum Monte Carlo
    Wei Chao
    Li Xiao-Fan
    Zhang Mei-Gen
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2008, 51 (05): : 1494 - 1502
  • [36] Variance minimization for variational quantum Monte Carlo method
    Huang, HX
    Cao, ZX
    Liu, SB
    PROGRESS IN NATURAL SCIENCE, 1997, 7 (05) : 549 - 553
  • [37] Perturbative Quantum Monte Carlo Method for Nuclear Physics
    Lu, Bing-Nan
    Li, Ning
    Elhatisari, Serdar
    Ma, Yuan-Zhuo
    Lee, Dean
    Meissner, Ulf-G
    PHYSICAL REVIEW LETTERS, 2022, 128 (24)
  • [38] Floating Block Method for Quantum Monte Carlo Simulations
    Sarkar, Avik
    Lee, Dean
    Meissner, Ulf-G.
    PHYSICAL REVIEW LETTERS, 2023, 131 (24)
  • [39] A new algorithm for variational quantum Monte Carlo method
    Huang, HX
    Cao, ZX
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1998, 19 (10): : 1636 - 1639
  • [40] Krylov-Projected Quantum Monte Carlo Method
    Blunt, N. S.
    Alavi, Ali
    Booth, George H.
    PHYSICAL REVIEW LETTERS, 2015, 115 (05)