Floating Block Method for Quantum Monte Carlo Simulations

被引:1
|
作者
Sarkar, Avik [1 ,2 ,3 ,4 ]
Lee, Dean [3 ,4 ]
Meissner, Ulf-G. [1 ,2 ,5 ,6 ,7 ]
机构
[1] Inst Adv Simulat, Inst Kernphys, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany
[3] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[5] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany
[6] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany
[7] Tbilisi State Univ, Tbilisi 0186, Georgia
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ALGORITHM;
D O I
10.1103/PhysRevLett.131.242503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum Monte Carlo simulations are powerful and versatile tools for the quantum many-body problem. In addition to the usual calculations of energies and eigenstate observables, quantum Monte Carlo simulations can in principle be used to build fast and accurate many-body emulators using eigenvector continuation or design time-dependent Hamiltonians for adiabatic quantum computing. These new applications require something that is missing from the published literature, an efficient quantum Monte Carlo scheme for computing the inner product of ground state eigenvectors corresponding to different Hamiltonians. In this work, we introduce an algorithm called the floating block method, which solves the problem by performing Euclidean time evolution with two different Hamiltonians and interleaving the corresponding time blocks. We use the floating block method and nuclear lattice simulations to build eigenvector continuation emulators for energies of He-4, Be-8, C-12, and O-16 nuclei over a range of local and nonlocal interaction couplings. From the emulator data, we identify the quantum phase transition line from a Bose gas of alpha particles to a nuclear liquid.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum Monte Carlo Simulations
    Troyer, Matthias
    Werner, Philipp
    [J]. LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XIII, 2009, 1162 : 98 - 173
  • [2] Generalized directed loop method for quantum Monte Carlo simulations
    Alet, F
    Wessel, S
    Troyer, M
    [J]. PHYSICAL REVIEW E, 2005, 71 (03):
  • [3] Multiple-histogram method for quantum Monte Carlo simulations
    Martin, CL
    [J]. PHYSICAL REVIEW B, 1999, 59 (03) : 1870 - 1873
  • [4] Improved directed loop method for quantum Monte Carlo simulations
    Alet, F
    Wessel, S
    Troyer, M
    [J]. MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 : 369 - 370
  • [5] Exact special twist method for quantum Monte Carlo simulations
    Dagrada, Mario
    Karakuzu, Seher
    Vildosola, Veronica Laura
    Casula, Michele
    Sorella, Sandro
    [J]. PHYSICAL REVIEW B, 2016, 94 (24)
  • [6] Torsional diffusion Monte Carlo: A method for quantum simulations of proteins
    Clary, DC
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (22): : 9725 - 9732
  • [7] Quantum Monte Carlo simulations of solids
    Foulkes, WMC
    Mitas, L
    Needs, RJ
    Rajagopal, G
    [J]. REVIEWS OF MODERN PHYSICS, 2001, 73 (01) : 33 - 83
  • [8] The quantum Monte Carlo method
    Towler, M. D.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (11): : 2573 - 2598
  • [9] Quantum Monte Carlo Simulations in Momentum Space
    戴希
    [J]. Chinese Physics Letters., 2022, 39 (05)
  • [10] Quantum-Monte-Carlo simulations of polyethylene
    W. Michalke
    S. Kreitmeier
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 4 : 469 - 473