Stochastic Galerkin method and port-Hamiltonian form for linear dynamical systems of second order

被引:1
|
作者
Pulch, Roland [1 ]
机构
[1] Univ Greifswald, Inst Math & Comp Sci, Walther Rathenau Str 47, D-17489 Greifswald, Germany
关键词
Ordinary differential equation; Port-Hamiltonian system; Hamiltonian function; Stochastic Galerkin method; Model order reduction; Uncertainty quantification; ORDER REDUCTION; MODEL-REDUCTION;
D O I
10.1016/j.matcom.2023.09.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate linear dynamical systems of second order. Uncertainty quantification is applied, where physical parameters are substituted by random variables. A stochastic Galerkin method yields a linear dynamical system of second order with high dimensionality. A structure-preserving model order reduction (MOR) produces a small linear dynamical system of second order again. We arrange an associated port-Hamiltonian (pH) formulation of first order for the second-order systems. Each pH system implies a Hamiltonian function describing an internal energy. We examine the properties of the Hamiltonian function for the stochastic Galerkin systems. We show numerical results using a test example, where both the stochastic Galerkin method and structure-preserving MOR are applied.(c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [1] STOCHASTIC GALERKIN METHOD AND PORT-HAMILTONIAN FORM FOR LINEAR FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS
    Pulch, Roland
    Sete, Olivier
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2024, 14 (04) : 65 - 82
  • [2] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [3] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [4] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [5] On Higher-order Linear Port-Hamiltonian Systems and Their Duals
    Rapisarda, P.
    Mayo Maldonado, J. C.
    IFAC PAPERSONLINE, 2017, 50 (01): : 9236 - 9241
  • [6] Linear port-Hamiltonian descriptor systems
    Christopher Beattie
    Volker Mehrmann
    Hongguo Xu
    Hans Zwart
    Mathematics of Control, Signals, and Systems, 2018, 30
  • [7] Linear port-Hamiltonian descriptor systems
    Beattie, Christopher
    Mehrmann, Volker
    Xu, Hongguo
    Zwart, Hans
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (04)
  • [8] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [9] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [10] Riemannian optimization model order reduction method for general linear port-Hamiltonian systems
    Li, Zi-Xue
    Jiang, Yao-Lin
    Xu, Kang-Li
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2022, 39 (02) : 590 - 608