Very Regular Solution to Landau-Lifshitz-Gilbert System with Spin-polarized Transport

被引:2
|
作者
Chen, Bo [1 ,3 ,4 ]
Wang, Youde [2 ,4 ,5 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 04期
关键词
Landau-Lifshitz system with spin-polarized transport; very regular solution; compatibility conditions of the initial data; Galerkin approximation method; auxiliary approximation equation; GLOBAL WEAK SOLUTIONS; SCHRODINGER MAPS; DIMENSIONS; EXISTENCE; EQUATION; FLOW; UNIQUENESS; CHAIN;
D O I
10.1007/s11464-021-0209-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide a precise description of the compatibility conditions for the initial data so that one can show the existence and uniqueness of regular short-time solution to the Neumann initial-boundary problem of a class of Landau-Lifshitz-Gilbert system with spin-polarized transport, which is a strong nonlinear coupled parabolic system with non-local energy.
引用
收藏
页码:751 / 795
页数:45
相关论文
共 50 条
  • [21] Existence of vertical spin stiffness in Landau-Lifshitz-Gilbert equation in ferromagnetic semiconductors
    Shen, K.
    Tatara, G.
    Wu, M. W.
    [J]. PHYSICAL REVIEW B, 2011, 83 (08)
  • [22] A framework of the finite element solution of the Landau-Lifshitz-Gilbert equation on tetrahedral meshes
    Yang, Lei
    Chen, Jingrun
    Hu, Guanghui
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 431
  • [23] VORTEX MOTION FOR THE LANDAU-LIFSHITZ-GILBERT EQUATION WITH SPIN-TRANSFER TORQUE
    Kurzke, Matthias
    Melcher, Christof
    Moser, Roger
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) : 1099 - 1121
  • [24] The fascinating world of the Landau-Lifshitz-Gilbert equation: an overview
    Lakshmanan, M.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1939): : 1280 - 1300
  • [25] Innovative weak formulation for the Landau-Lifshitz-Gilbert equations
    Szambolics, H.
    Toussaint, J.-Ch.
    Buda-Prejbeanu, L.D.
    Alouges, F.
    Kritsikis, E.
    Fruchart, O.
    [J]. IEEE Transactions on Magnetics, 2008, 44 (11 PART 2) : 3153 - 3156
  • [26] Adaptive techniques for Landau-Lifshitz-Gilbert equation with magnetostriction
    Banas, L'ubomir
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 215 (02) : 304 - 310
  • [27] Generalized Walker solutions to the Landau-Lifshitz-Gilbert equations
    Braselton, JP
    Abell, ML
    Braselton, LM
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2001, 36 (04) : 571 - 579
  • [28] On the Cauchy problem for the noncompact Landau-Lifshitz-Gilbert equation
    Tsutsumi, Masayoshi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) : 157 - 174
  • [29] Analysis of instabilities in nonlinear Landau-Lifshitz-Gilbert dynamics under circularly polarized fields
    Bertotti, G
    Mayergoyz, ID
    Serpico, C
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) : 7556 - 7558
  • [30] Dissipative soliton dynamics of the Landau-Lifshitz-Gilbert equation
    Rothos, V. M.
    Mylonas, I. K.
    Bountis, T.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 215 (02) : 622 - 635