Asymptotic distribution;
Distribution function estimation;
Missing at random;
Quantile difference;
Right-censored;
PRODUCT-LIMIT ESTIMATOR;
EMPIRICAL LIKELIHOOD;
INFERENCE;
D O I:
10.1007/s10985-023-09614-7
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.
机构:
Univ London London Sch Hyg & Trop Med, Dept Noncommunicable Dis Epidemiol, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Dept Noncommunicable Dis Epidemiol, London WC1E 7HT, England
Bhaskaran, Krishnan
Smeeth, Liam
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Dept Noncommunicable Dis Epidemiol, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Dept Noncommunicable Dis Epidemiol, London WC1E 7HT, England
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
机构:
Mirzo Ulugbek National University of Uzbekistan, Faculty of Mechanics and Mathematics, Department of Probability Theory and Mathematical Statistics, TashkentMirzo Ulugbek National University of Uzbekistan, Faculty of Mechanics and Mathematics, Department of Probability Theory and Mathematical Statistics, Tashkent
Abdushukurov A.A.
Holmurodov F.M.
论文数: 0引用数: 0
h-index: 0
机构:
Mirzo Ulugbek National University of Uzbekistan, Faculty of Mechanics and Mathematics, Department of Probability Theory and Mathematical Statistics, TashkentMirzo Ulugbek National University of Uzbekistan, Faculty of Mechanics and Mathematics, Department of Probability Theory and Mathematical Statistics, Tashkent
机构:
New Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USANew Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USA
Subramanian, Sundarraman
Bandyopadhyay, Dipankar
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ S Carolina, Dept Biostat Bioinformat & Epidemiol, Charleston, SC 29425 USANew Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USA
机构:
Jinan Univ, Sch Econ, Dept Stat & Data Sci, Guangzhou 510632, Peoples R ChinaJinan Univ, Sch Econ, Dept Stat & Data Sci, Guangzhou 510632, Peoples R China
Liao, Longbiao
Liu, Jinghao
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Sch Econ, Dept Stat & Data Sci, Guangzhou 510632, Peoples R ChinaJinan Univ, Sch Econ, Dept Stat & Data Sci, Guangzhou 510632, Peoples R China