Quantile difference estimation with censoring indicators missing at random

被引:0
|
作者
Kong, Cui-Juan [1 ]
Liang, Han-Ying [2 ]
机构
[1] Shandong Univ, Zhongtai Secur Inst Financial Studies, Jinan 250100, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic distribution; Distribution function estimation; Missing at random; Quantile difference; Right-censored; PRODUCT-LIMIT ESTIMATOR; EMPIRICAL LIKELIHOOD; INFERENCE;
D O I
10.1007/s10985-023-09614-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.
引用
收藏
页码:345 / 382
页数:38
相关论文
共 50 条
  • [31] Integrated Square Error of Hazard Rate Estimation for Survival Data with Missing Censoring Indicators
    Zou, Yuye
    Fan, Guoliang
    Zhang, Riquan
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (02) : 735 - 758
  • [32] Integrated Square Error of Hazard Rate Estimation for Survival Data with Missing Censoring Indicators
    Yuye Zou
    Guoliang Fan
    Riquan Zhang
    [J]. Journal of Systems Science and Complexity, 2021, 34 : 735 - 758
  • [33] Integrated Square Error of Hazard Rate Estimation for Survival Data with Missing Censoring Indicators
    ZOU Yuye
    FAN Guoliang
    ZHANG Riquan
    [J]. Journal of Systems Science & Complexity, 2021, 34 (02) : 735 - 758
  • [34] CONFIDENCE BANDS FOR THE QUANTILE FUNCTION UNDER RANDOM CENSORING
    EINMAHL, JHJ
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 36 (01) : 69 - 75
  • [35] QUANTILE REGRESSION WITH COVARIATES MISSING AT RANDOM
    Wei, Ying
    Yang, Yunwen
    [J]. STATISTICA SINICA, 2014, 24 (03) : 1277 - 1299
  • [36] Bayesian analysis of survival data with missing censoring indicators
    Brownstein, Naomi C.
    Bunn, Veronica
    Castro, Luis M.
    Sinha, Debajyoti
    [J]. BIOMETRICS, 2021, 77 (01) : 305 - 315
  • [37] Weighted local polynomial estimations of a non-parametric function with censoring indicators missing at random and their applications
    Wang, Jiangfeng
    Zhou, Yangcheng
    Tang, Ju
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (01) : 117 - 139
  • [38] Weighted local polynomial estimations of a non-parametric function with censoring indicators missing at random and their applications
    Jiangfeng Wang
    Yangcheng Zhou
    Ju Tang
    [J]. Frontiers of Mathematics in China, 2022, 17 : 117 - 139
  • [39] Support vector censored quantile regression under random censoring
    Shim, Jooyong
    Hwang, Changha
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 912 - 919
  • [40] Instrumental variable quantile regression under random right censoring
    Beyhum, Jad
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    [J]. ECONOMETRICS JOURNAL, 2024, 27 (01): : 21 - 36