Combination of the modified Kibria-Lukman and the principal component regression estimators

被引:0
|
作者
Huang, Dan [1 ]
Huang, Jiewu [2 ]
Bai, Dewei [2 ]
机构
[1] Moutai Inst, Dept Business Adm, Guizhou, Peoples R China
[2] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guizhou, Peoples R China
关键词
Linear regression model; Multicollinearity; Principal component estimator; MKL estimator; Mean squared error; RIDGE;
D O I
10.1080/03610918.2023.2292970
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical inference with the ordinary least squares (OLS) estimator is frequently influenced when there is a multicollinearity in the linear regression model. In this article, to reduce these effects of multicollinearity, we generalize the modified Kibria-Lukman principal component (MKLPC) estimator in the linear regression model by combining the principal component regression (PCR) estimator and the modified Kibria-Lukman (MKL) estimator. Meanwhile, the necessary and sufficient conditions for the superiority of the MKLPC estimator over OLS, PCR, Ridge, r-k, Liu, r-d, k-d, KL, and MKL estimators in the mean squared error (MSE) criterion are derived. Furthermore, we conduct Monte Carlo simulation and empirical analysis to compare these estimators under the MSE criterion.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Envelopes and principal component regression∗†
    Zhang, Xin
    Deng, Kai
    Mai, Qing
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2447 - 2484
  • [32] On Robustness of Principal Component Regression
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [33] On Robustness of Principal Component Regression
    Agarwal, Anish
    Shah, Devavrat
    Shen, Dennis
    Song, Dogyoon
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (536) : 1731 - 1745
  • [34] SKETCHING FOR PRINCIPAL COMPONENT REGRESSION
    Mor-Yosef, Liron
    Avron, Haim
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (02) : 454 - 485
  • [35] A Modified Principal Component Regression Method for Quality-related Fault Detection
    Gao, Wenxiao
    Zhang, Aihua
    Yu, Zhongdang
    [J]. PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 421 - 426
  • [36] WHICH PRINCIPAL COMPONENTS TO UTILIZE FOR PRINCIPAL COMPONENT REGRESSION
    SUTTER, JM
    KALIVAS, JH
    LANG, PM
    [J]. JOURNAL OF CHEMOMETRICS, 1992, 6 (04) : 217 - 225
  • [37] INFLUENCE DIAGNOSTICS FOR FRACTIONAL PRINCIPAL COMPONENTS ESTIMATORS IN REGRESSION
    WALKER, E
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1990, 19 (03) : 919 - 933
  • [38] Hybrid principal component regression estimation in linear regression
    Rong, Jian-Ying
    Liu, Xu-Qing
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3758 - 3776
  • [39] PRINCIPAL COMPONENT REGRESSION UNDER EXCHANGEABILITY
    SOOFI, ES
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (06) : 1717 - 1733
  • [40] Bootstrapping principal component regression models
    Wehrens, R
    VanderLinden, WE
    [J]. JOURNAL OF CHEMOMETRICS, 1997, 11 (02) : 157 - 171