Violence Detection Method Based on Convolution Neural Network and Trajectory

被引:0
|
作者
Li, Jianxin [1 ]
Liu, Jie [1 ]
Li, Chao [2 ]
Cao, Wenliang [1 ]
Li, Bin [1 ]
Jiang, Fei [3 ]
Huang, Jinyu [4 ]
Guo, Yingxia [5 ]
Liu, Yang [1 ]
机构
[1] Dongguan Polytech, Sch Elect Informat, Dongguan 523808, Peoples R China
[2] Guangzhou Sontan Polytech Coll, Sch Informat Engn, Guangzhou 511300, Peoples R China
[3] Guangxi Int Business Vocat Coll, Sch Modern Circulat, Nanning 530000, Peoples R China
[4] Dongguan Hosp Integrated Tradit Chinese & Western, Facial Clin, Dongguan 523000, Peoples R China
[5] Dongguan Hosp Integrated Tradit Chinese & Western, Gastroscopy Dept, Dongguan 523000, Peoples R China
关键词
AI; decision support; violence detection; machine learning; convolutional neu-ral network; IDT algorithm; LOCALIZATION;
D O I
10.6688/JISE.202307_39(4).0005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The safety of people's lives and property is the primary factor for the success of urban construction. Therefore, in order to better maintain social stability and harmony, relying on computer technology to effectively detect violence and to make decision support has important theoretical and practical significance. Aiming at the shortcomings of traditional manual design feature extraction methods, this paper proposes a super automatic violence detection method based on the combination of Deep Learning and trajectory in AI systems. Firstly, aiming at the problem of complex time and high accuracy of traditional manual feature extraction, a deep spatiotemporal violence detection method based on three-dimensional convolution and trajectory in AI systems is proposed. We improve the IDT algorithm to extract the target trajectory, and carry out three-dimensional convolution and pooling operation to calculate the deep-seated temporal and spatial information in the video frame, so as to realize peer-to-peer detection in AI systems. Secondly, in order to further improve the acquired deep-seated time and space information and utilization rate and achieve high detection rate, the feature fusion of double stream convolution and threedimensional convolution is proposed, and the feature extraction of continuous video frame sequence is carried out by three-dimensional convolution neural network (C3D), which can effectively extract the fusion feature information of time and space in the classification layer, so as to obtain the final classification result. Finally, in order to solve the problem of too deep network level and slow convergence, dense convolution is introduced, which reduces the parameters of the network model and time complexity. Experimental results show that compared with other mainstream algorithms, this method is more effective and stable, and can be applied to the detection of violent abnormal behavior in video. Meanwhile, the method proposed in this paper has important theoretical value and practical significance for decision support of video surveillance system in AI systems.
引用
下载
收藏
页码:777 / 796
页数:20
相关论文
共 50 条
  • [31] Abnormal Target Detection Method in Hyperspectral Remote Sensing Image Based on Convolution Neural Network
    Liu, Yun
    Liu, Jia-Bao
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [32] Real-time Detection Method of Newborn Piglets Based on Deep Convolution Neural Network
    Shen M.
    Tai M.
    Cedric O.
    Liu L.
    Li J.
    Sun Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (08): : 270 - 279
  • [33] Real-Time Traffic Sign Detection Method Based on Improved Convolution Neural Network
    Tong Ying
    Yang Huicheng
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (07)
  • [34] Vehicle driver drowsiness detection method using wearable EEG based on convolution neural network
    Miankuan Zhu
    Jiangfan Chen
    Haobo Li
    Fujian Liang
    Lei Han
    Zutao Zhang
    Neural Computing and Applications, 2021, 33 : 13965 - 13980
  • [35] An Efficient Method of Histological Cell Image Detection Based on Spatial Information Convolution Neural Network
    Qiang, Qi
    Hong, Wang
    Likang, Peng
    ICVIP 2019: PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, 2019, : 69 - 73
  • [36] A Training Method of Convolution Neural Network for Illumination Robust Pedestrian Detection
    Jeong, Junmo
    INTERNATIONAL JOURNAL OF EMBEDDED AND REAL-TIME COMMUNICATION SYSTEMS (IJERTCS), 2019, 10 (02): : 53 - 65
  • [37] Multiscale Residual Convolution Neural Network and Sector Descriptor-Based Road Detection Method
    Dai, Jiguang
    Du, Yang
    Zhu, Tingting
    Wang, Yang
    Gao, Lin
    IEEE ACCESS, 2019, 7 : 173377 - 173392
  • [38] Vehicle driver drowsiness detection method using wearable EEG based on convolution neural network
    Zhu, Miankuan
    Chen, Jiangfan
    Li, Haobo
    Liang, Fujian
    Han, Lei
    Zhang, Zutao
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (20): : 13965 - 13980
  • [39] Traffic light color detection method using convolution neural network
    Min J.-W.
    Park J.-K.
    Kang D.-J.
    Kang, Dong-Joong (djkang@pusan.ac.kr), 1600, Institute of Control, Robotics and Systems (23): : 474 - 481
  • [40] A Garbage Classification Method Based on a Small Convolution Neural Network
    Yang, Zerui
    Xia, Zhenhua
    Yang, Guangyao
    Lv, Yuan
    SUSTAINABILITY, 2022, 14 (22)