Violence Detection Method Based on Convolution Neural Network and Trajectory

被引:0
|
作者
Li, Jianxin [1 ]
Liu, Jie [1 ]
Li, Chao [2 ]
Cao, Wenliang [1 ]
Li, Bin [1 ]
Jiang, Fei [3 ]
Huang, Jinyu [4 ]
Guo, Yingxia [5 ]
Liu, Yang [1 ]
机构
[1] Dongguan Polytech, Sch Elect Informat, Dongguan 523808, Peoples R China
[2] Guangzhou Sontan Polytech Coll, Sch Informat Engn, Guangzhou 511300, Peoples R China
[3] Guangxi Int Business Vocat Coll, Sch Modern Circulat, Nanning 530000, Peoples R China
[4] Dongguan Hosp Integrated Tradit Chinese & Western, Facial Clin, Dongguan 523000, Peoples R China
[5] Dongguan Hosp Integrated Tradit Chinese & Western, Gastroscopy Dept, Dongguan 523000, Peoples R China
关键词
AI; decision support; violence detection; machine learning; convolutional neu-ral network; IDT algorithm; LOCALIZATION;
D O I
10.6688/JISE.202307_39(4).0005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The safety of people's lives and property is the primary factor for the success of urban construction. Therefore, in order to better maintain social stability and harmony, relying on computer technology to effectively detect violence and to make decision support has important theoretical and practical significance. Aiming at the shortcomings of traditional manual design feature extraction methods, this paper proposes a super automatic violence detection method based on the combination of Deep Learning and trajectory in AI systems. Firstly, aiming at the problem of complex time and high accuracy of traditional manual feature extraction, a deep spatiotemporal violence detection method based on three-dimensional convolution and trajectory in AI systems is proposed. We improve the IDT algorithm to extract the target trajectory, and carry out three-dimensional convolution and pooling operation to calculate the deep-seated temporal and spatial information in the video frame, so as to realize peer-to-peer detection in AI systems. Secondly, in order to further improve the acquired deep-seated time and space information and utilization rate and achieve high detection rate, the feature fusion of double stream convolution and threedimensional convolution is proposed, and the feature extraction of continuous video frame sequence is carried out by three-dimensional convolution neural network (C3D), which can effectively extract the fusion feature information of time and space in the classification layer, so as to obtain the final classification result. Finally, in order to solve the problem of too deep network level and slow convergence, dense convolution is introduced, which reduces the parameters of the network model and time complexity. Experimental results show that compared with other mainstream algorithms, this method is more effective and stable, and can be applied to the detection of violent abnormal behavior in video. Meanwhile, the method proposed in this paper has important theoretical value and practical significance for decision support of video surveillance system in AI systems.
引用
下载
收藏
页码:777 / 796
页数:20
相关论文
共 50 条
  • [11] Glass surface defect detection method based on multiscale convolution neural network
    Xiong H.
    Fan C.
    Zhao S.
    Yu Y.
    2020, CIMS (26): : 900 - 909
  • [12] Infrared Ship Target Detection Method Based on Deep Convolution Neural Network
    Wang Wenxiu
    Fu Yutian
    Dong Feng
    Li Feng
    ACTA OPTICA SINICA, 2018, 38 (07)
  • [13] WILDFIRE DETECTION CUBESAT BASED ON CONVOLUTION NEURAL NETWORK
    Bin Azami, Muhammad Hasif
    Orger, Necmi Cihan
    Schulz, Victor Hugo
    Cho, Mengu
    SPIE FUTURE SENSING TECHNOLOGIES 2021, 2021, 11914
  • [14] Mammographic mass detection based on convolution neural network
    Li, Yanfeng
    Chen, Houjin
    Zhang, Linlin
    Cheng, Lin
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3850 - 3855
  • [15] An intrusion detection system based on convolution neural network
    Mo, Yanmeng
    Li, Huige
    Wang, Dongsheng
    Liu, Gaqiong
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [16] A deep convolution neural network for object detection based
    Yue Q.
    Ma C.
    Yue, Qi (yueqi6@163.com), 1600, Harbin Institute of Technology (49): : 159 - 164
  • [17] Black tea withering moisture detection method based on convolution neural network confidence
    An, Ting
    Yu, Huan
    Yang, Chongshan
    Liang, Gaozhen
    Chen, Jiayou
    Hu, Zonghua
    Hu, Bin
    Dong, Chunwang
    JOURNAL OF FOOD PROCESS ENGINEERING, 2020, 43 (07)
  • [18] Text Classification Method Based on Convolution Neural Network
    Li, Lin
    Xiao, Linlong
    Wang, Nanzhi
    Yang, Guocai
    Zhang, Jianwu
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1985 - 1989
  • [19] Network intrusion detection based on variational quantum convolution neural network
    Gong, Changqing
    Guan, Weiqi
    Zhu, Hongsheng
    Gani, Abdullah
    Qi, Han
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (09): : 12743 - 12770
  • [20] Mixed Road User Trajectory Extraction From Moving Aerial Videos Based on Convolution Neural Network Detection
    Feng, Ruyi
    Fan, Changyan
    Li, Zhibin
    Chen, Xinqiang
    IEEE ACCESS, 2020, 8 : 43508 - 43519