MXene-supported transition metal single-atom catalysts for nitrogen dissociation

被引:7
|
作者
Gouveia, Jose D. [1 ]
Rocha, Henrique [1 ]
Gomes, Jose R. B. [1 ]
机构
[1] Univ Aveiro, Aveiro Inst Mat, Dept Chem, CICECO, Campus Univ Santiago, Aveiro, Portugal
来源
MOLECULAR CATALYSIS | 2023年 / 547卷
关键词
MXenes; Density functional theory; Adsorption; Single-atom catalysts; Nitrogen dissociation; AMMONIA-SYNTHESIS; STABILITY; COMPLEXES; SURFACE; POINTS; IRON;
D O I
10.1016/j.mcat.2023.113373
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Industrial ammonia production follows the Haber-Bosch process, whose rate-limiting step is the dissociation of the nitrogen molecule (N2), hence requiring suitable catalysts to break its triple bond. MXenes, a class of twodimensional transition metal carbides and nitrides, have been proposed as very efficient catalysts for N2 dissociation. Here, by employing density functional theory-based calculations, we assess whether the deposition of one atom of a transition metal element (TM) on the Ti2C MXene surface further improves the catalytic potential of the MXene, serving as a single-atom catalyst. The results show that, for 21 of the 30 TMs considered, N2 can exothermically bind to the TM adatom, this bonding being favourable with respect to adsorption on the pristine Ti2C MXene surface for TMs of groups 3 to 6 of the Periodic Table. All the 21 TMs that successfully bind to N2 effectively reduce the N2 dissociation energy barrier when compared to the bulk Ti2C MXene by 18 to 84 %. Our results strongly indicate that doping the Ti2C MXene with atoms of transition metal elements significantly reduces the energy required to break the triple bond in N2, which may impact the nitrogen-to-ammonia process.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Single-atom catalysts boost nitrogen electroreduction reaction
    Zhai, Yanling
    Zhu, Zhijun
    Zhu, Chengzhou
    Chen, Kyle
    Zhang, Xueji
    Tang, Jing
    Chen, Jun
    MATERIALS TODAY, 2020, 38 : 99 - 113
  • [42] MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis
    Jing, Yuanju
    Kang, Chun
    Lin, Yanxin
    Gao, Jie
    Wang, Xinbo
    PROGRESS IN CHEMISTRY, 2022, 34 (11) : 2373 - 2385
  • [43] Single-Atom Catalysts
    Gawande, Manoj B.
    Ariga, Katsuhiko
    Yamauchi, Yusuke
    SMALL, 2021, 17 (16)
  • [44] Single-Atom Catalysts
    Gawande, Manoj B.
    Ariga, Katsuhiko
    Yamauchi, Yusuke
    ADVANCED MATERIALS INTERFACES, 2021, 8 (08):
  • [45] Computational screening of pyrazine-based graphene-supported transition metals as single-atom catalysts for the nitrogen reduction reaction
    Zhang, Min
    Xia, Caijuan
    Li, Lianbi
    Wang, Anxiang
    Cao, Dezhong
    Zhang, Baiyu
    Fang, Qinglong
    Zhao, Xumei
    DALTON TRANSACTIONS, 2024, 53 (35) : 14910 - 14921
  • [46] Metal-metal interactions in correlated single-atom catalysts
    Shan, Jieqiong
    Ye, Chao
    Jiang, Yunling
    Jaroniec, Mietek
    Zheng, Yao
    Qiao, Shi-Zhang
    SCIENCE ADVANCES, 2022, 8 (17):
  • [47] Single-atom catalysts templated by metal-organic frameworks for electrochemical nitrogen reduction
    Zhang, Rui
    Jiao, Long
    Yang, Weijie
    Wan, Gang
    Jiang, Hai-Long
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (46) : 26371 - 26377
  • [48] Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent-Organic Frameworks for Efficient Nitrogen Fixation
    Wang, Juan
    Zhang, Zhihua
    Li, Yangyang
    Qu, Yuanyuan
    Li, Yongqiang
    Li, Weifeng
    Zhao, Mingwen
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 1024 - 1033
  • [49] Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent-Organic Frameworks for Efficient Nitrogen Fixation
    Wang, Juan
    Zhang, Zhihua
    Li, Yangyang
    Qu, Yuanyuan
    Li, Yongqiang
    Li, Weifeng
    Zhao, Mingwen
    ACS Applied Materials and Interfaces, 2022, 14 (01): : 1024 - 1033
  • [50] Screening transition metal and nonmetal atoms co-doped graphyne as efficient single-atom catalysts for nitrogen reduction
    Li, Shu-Long
    Peng, Ming
    Song, Yu
    Chen, Yutao
    Qiao, Liang
    Feng, Yong
    Zhao, Yong
    Gan, Li-Yong
    CHEMICAL ENGINEERING JOURNAL, 2024, 495