MXene-supported transition metal single-atom catalysts for nitrogen dissociation

被引:7
|
作者
Gouveia, Jose D. [1 ]
Rocha, Henrique [1 ]
Gomes, Jose R. B. [1 ]
机构
[1] Univ Aveiro, Aveiro Inst Mat, Dept Chem, CICECO, Campus Univ Santiago, Aveiro, Portugal
来源
MOLECULAR CATALYSIS | 2023年 / 547卷
关键词
MXenes; Density functional theory; Adsorption; Single-atom catalysts; Nitrogen dissociation; AMMONIA-SYNTHESIS; STABILITY; COMPLEXES; SURFACE; POINTS; IRON;
D O I
10.1016/j.mcat.2023.113373
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Industrial ammonia production follows the Haber-Bosch process, whose rate-limiting step is the dissociation of the nitrogen molecule (N2), hence requiring suitable catalysts to break its triple bond. MXenes, a class of twodimensional transition metal carbides and nitrides, have been proposed as very efficient catalysts for N2 dissociation. Here, by employing density functional theory-based calculations, we assess whether the deposition of one atom of a transition metal element (TM) on the Ti2C MXene surface further improves the catalytic potential of the MXene, serving as a single-atom catalyst. The results show that, for 21 of the 30 TMs considered, N2 can exothermically bind to the TM adatom, this bonding being favourable with respect to adsorption on the pristine Ti2C MXene surface for TMs of groups 3 to 6 of the Periodic Table. All the 21 TMs that successfully bind to N2 effectively reduce the N2 dissociation energy barrier when compared to the bulk Ti2C MXene by 18 to 84 %. Our results strongly indicate that doping the Ti2C MXene with atoms of transition metal elements significantly reduces the energy required to break the triple bond in N2, which may impact the nitrogen-to-ammonia process.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation
    Meng, Yang
    Liang, Jin-Xia
    Zhu, Chun
    Xu, Cong-Qiao
    Li, Jun
    SCIENCE CHINA-MATERIALS, 2022, 65 (05) : 1303 - 1312
  • [22] Original exploration of transition metal single-atom catalysts for NOx reduction
    Zhu, Hongjian
    Wang, Rui
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (07) : 3464 - 3470
  • [23] Direct quantitative assessment of single-atom metal sites supported on powder catalysts
    Aniceto-Ocana, Paula
    Marqueses-Rodriguez, Jose
    Perez-Omil, Jose A.
    Calvino, Jose J.
    Castillo, Carmen E.
    Lopez-Haro, Miguel
    COMMUNICATIONS MATERIALS, 2024, 5 (01)
  • [24] Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction
    Liu, Kang
    Fu, Junwei
    Zhu, Li
    Zhang, Xiaodong
    Li, Hongmei
    Liu, Hui
    Hu, Junhua
    Liu, Min
    NANOSCALE, 2020, 12 (08) : 4903 - 4908
  • [25] α-MoC Supported Noble Metal Catalysts for Water-Gas Shift Reaction: Single-Atom Promoter or Single-Atom Player
    Li, Juan
    Sun, Li
    Wan, Qiang
    Lin, Jian
    Lin, Sen
    Wang, Xiaodong
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (46): : 11415 - 11421
  • [26] Single-atom catalysts supported on two-dimensional tetragonal transition metal chalcogenides for hydrogen and oxygen evolution
    Cheng, Yumeng
    Zhou, Jia
    ISCIENCE, 2024, 27 (02)
  • [27] Theoretical Evaluation of Electrochemical Nitrate Reduction Reaction on Graphdiyne-Supported Transition Metal Single-Atom Catalysts
    Ai, Fei
    Wang, Jike
    ACS OMEGA, 2022, 7 (35): : 31309 - 31317
  • [28] Integrating Interactive Noble Metal Single-Atom Catalysts into Transition Metal Oxide Lattices
    Shan, Jieqiong
    Ye, Chao
    Zhu, Chongzhi
    Dong, Juncai
    Xu, Wenjie
    Chen, Ling
    Jiao, Yan
    Jiang, Yunling
    Song, Li
    Zhang, Yaning
    Jaroniec, Mietek
    Zhu, Yihan
    Zheng, Yao
    Qiao, Shi-Zhang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (50) : 23214 - 23222
  • [29] Termination-Accelerated Electrochemical Nitrogen Fixation on Single-Atom Catalysts Supported by MXenes
    Niu, Kaifeng
    Chi, Lifeng
    Rosen, Johanna
    Bjork, Jonas
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (12): : 2800 - 2807
  • [30] Fabrication, characterization, and stability of supported single-atom catalysts
    Chen, Yaxin
    Huang, Zhiwei
    Ma, Zhen
    Chen, Jianmin
    Tang, Xingfu
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (19) : 4250 - 4258