Spanners in randomly weighted graphs: Euclidean case

被引:0
|
作者
Frieze, Alan [1 ]
Pegden, Wesley [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
random points; shortest paths; spanners; STRETCH FACTOR;
D O I
10.1002/jgt.22950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a connected graph G=(V,E) $G=(V,E)$ and a length function l:E -> R $\ell :E\to {\mathbb{R}}$ we let dv,w ${d}_{v,w}$ denote the shortest distance between vertex v $v$ and vertex w $w$. A t $t$-spanner is a subset E 'subset of E $E<^>{\prime} \subseteq E$ such that if dv,w ' ${d}_{v,w}<^>{<^>{\prime} }$ denotes shortest distances in the subgraph G '=(V,E ') $G<^>{\prime} =(V,E<^>{\prime} )$ then dv,w '<= tdv,w ${d}_{v,w}<^>{<^>{\prime} }\le t{d}_{v,w}$ for all v,w is an element of V $v,w\in V$. We study the size of spanners in the following scenario: we consider a random embedding Xp ${{\mathscr{X}}}_{p}$ of Gn,p ${G}_{n,p}$ into the unit square with Euclidean edge lengths. For epsilon>0 $\epsilon \gt 0$ constant, we prove the existence w.h.p. of (1+epsilon) $(1+\epsilon )$-spanners for Xp ${{\mathscr{X}}}_{p}$ that have O epsilon(n) ${O}_{\epsilon }(n)$ edges. These spanners can be constructed in O epsilon(n2logn) ${O}_{\epsilon }({n}<^>{2}\mathrm{log}n)$ time. (We will use O epsilon ${O}_{\epsilon }$ to indicate that the hidden constant depends on epsilon $\varepsilon $). There are constraints on p $p$ preventing it going to zero too quickly.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
  • [21] Lower Bound for Sparse Euclidean Spanners
    Agarwal, Pankaj K.
    Wang, Yusu
    Yin, Peng
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 670 - 671
  • [22] Drawing Graphs as Spanners
    Oswin Aichholzer
    Manuel Borrazzo
    Prosenjit Bose
    Jean Cardinal
    Fabrizio Frati
    Pat Morin
    Birgit Vogtenhuber
    Discrete & Computational Geometry, 2022, 68 : 774 - 795
  • [23] EUCLIDEAN STEINER SPANNERS: LIGHT AND SPARSE
    Bhore, Sujoy
    Toth, Csaba D.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 2411 - 2444
  • [24] ON SPANNERS OF GEOMETRIC GRAPHS
    Gudmundsson, Joachim
    Smid, Michiel
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2009, 20 (01) : 135 - 149
  • [25] On Spanners of Geometric Graphs
    Kanj, Iyad A.
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, 2009, 5532 : 49 - 58
  • [26] Spanners for Geodesic Graphs and Visibility Graphs
    Abam, Mohammad Ali
    ALGORITHMICA, 2018, 80 (02) : 515 - 529
  • [27] Spanners for Geodesic Graphs and Visibility Graphs
    Mohammad Ali Abam
    Algorithmica, 2018, 80 : 515 - 529
  • [28] Minimum weight Euclidean (1+ε)-spanners
    Toth, Csaba D.
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118
  • [29] BALANCING DEGREE, DIAMETER, AND WEIGHT IN EUCLIDEAN SPANNERS
    Solomon, Shay
    Elkin, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1173 - 1198
  • [30] A fast algorithm for constructing sparse Euclidean spanners
    Das, G
    Narasimham, G
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1997, 7 (04) : 297 - 315