Spanners for Geodesic Graphs and Visibility Graphs

被引:0
|
作者
Mohammad Ali Abam
机构
[1] Sharif University of Technology,Computer Engineering Department
来源
Algorithmica | 2018年 / 80卷
关键词
Spanners; Geodesic distance; Visibility graphs; Polygonal domains;
D O I
暂无
中图分类号
学科分类号
摘要
Let P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}$$\end{document} be a set of n points inside a polygonal domain D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{D}$$\end{document}. A polygonal domain with h holes (or obstacles) consists of h disjoint polygonal obstacles surrounded by a simple polygon which itself acts as an obstacle. We first study t-spanners for the set P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}$$\end{document} with respect to the geodesic distance function π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} where for any two points p and q, π(p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi (p,q)$$\end{document} is equal to the Euclidean length of the shortest path from p to q that avoids the obstacles interiors. For a case where the polygonal domain is a simple polygon (i.e., h=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=0$$\end{document}), we construct a (10+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{10}+\epsilon $$\end{document})-spanner that has O(nlog2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \log ^2 n)$$\end{document} edges. For a case where there are h holes, our construction gives a (5+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5+\epsilon $$\end{document})-spanner with the size of O(nhlog2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\sqrt{h}\log ^2 n)$$\end{document}. Moreover, we study t-spanners for the visibility graph of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}$$\end{document} (VG(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$VG(\mathcal{P})$$\end{document}, for short) with respect to a hole-free polygonal domain D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{D}$$\end{document}. The graph VG(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$VG(\mathcal{P})$$\end{document} is not necessarily a complete graph or even connected. In this case, we propose an algorithm that constructs a (3+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+\epsilon $$\end{document})-spanner of size O(n4/3+δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{4/3+\delta })$$\end{document} for some δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}. In addition, we show that there is a set P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}$$\end{document} of n points such that any (3-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3-\epsilon )$$\end{document}-spanner of VG(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$VG(\mathcal{P})$$\end{document} must contain Ω(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n^2)$$\end{document} edges.
引用
收藏
页码:515 / 529
页数:14
相关论文
共 50 条
  • [1] Spanners for Geodesic Graphs and Visibility Graphs
    Abam, Mohammad Ali
    [J]. ALGORITHMICA, 2018, 80 (02) : 515 - 529
  • [2] Geodesic visibility in graphs
    Wu, AY
    Rosenfeld, A
    [J]. INFORMATION SCIENCES, 1998, 108 (1-4) : 5 - 12
  • [3] ON SPANNERS AND LIGHTWEIGHT SPANNERS OF GEOMETRIC GRAPHS
    Kanj, Iyad A.
    Perkovic, Ljubomir
    Xia, Ge
    [J]. SIAM JOURNAL ON COMPUTING, 2010, 39 (06) : 2132 - 2161
  • [4] Drawing Graphs as Spanners
    Aichholzer, Oswin
    Borrazzo, Manuel
    Bose, Prosenjit
    Cardinal, Jean
    Frati, Fabrizio
    Morin, Pat
    Vogtenhuber, Birgit
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) : 774 - 795
  • [5] Spanners in sparse graphs
    Dragan, Feodor F.
    Fomin, Fedor V.
    Golovach, Petr A.
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (06) : 1108 - 1119
  • [6] Spanners in sparse graphs
    Dragan, Feodor F.
    Fomin, Fedor V.
    Golovach, Petr A.
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 597 - +
  • [7] On spanners of geometric graphs
    Gudmundsson, Joachim
    Smid, Michiel
    [J]. ALGORITHM THEORY - SWAT 2006, PROCEEDINGS, 2006, 4059 : 388 - 399
  • [8] Drawing Graphs as Spanners
    Oswin Aichholzer
    Manuel Borrazzo
    Prosenjit Bose
    Jean Cardinal
    Fabrizio Frati
    Pat Morin
    Birgit Vogtenhuber
    [J]. Discrete & Computational Geometry, 2022, 68 : 774 - 795
  • [9] ON SPANNERS OF GEOMETRIC GRAPHS
    Gudmundsson, Joachim
    Smid, Michiel
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2009, 20 (01) : 135 - 149
  • [10] On Spanners of Geometric Graphs
    Kanj, Iyad A.
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, 2009, 5532 : 49 - 58