Reproducibility of 3D MRSI for imaging human brain glucose metabolism using direct ( 2 H) and indirect ( 1 H) detection of deuterium labeled compounds at 7T and clinical 3T*

被引:9
|
作者
Niess, Fabian [1 ,4 ]
Strasser, Bernhard [1 ,4 ]
Hingerl, Lukas [1 ,4 ]
Niess, Eva [1 ,2 ]
Motyka, Stanislav [1 ,2 ]
Hangel, Gilbert [1 ,3 ]
Krssak, Martin [4 ]
Gruber, Stephan [1 ,2 ]
Spurny-Dworak, Benjamin [4 ,5 ]
Trattnig, Siegfried [1 ,4 ,6 ]
Scherer, Thomas [4 ]
Lanzenberger, Rupert [4 ,5 ]
Bogner, Wolfgang [1 ,2 ]
机构
[1] Med Univ Vienna, High Field MR Ctr, Dept Biomed Imaging & Image Guided Therapy, Lazarettgasse 14, A-1090 Vienna, Austria
[2] Christian Doppler Lab MR Imaging Biomarkers BIOMAK, Vienna, Austria
[3] Med Univ Vienna, Dept Neurosurg, Vienna, Austria
[4] Med Univ Vienna, Dept Med 3, Div Endocrinol & Metab, Vienna, Austria
[5] Med Univ Vienna, Comprehens Ctr Clin Neurosci & Mental Hlth C3NMH, Dept Psychiat & Psychotherapy, Vienna, Austria
[6] Karl Landsteiner Soc, Inst Clin Mol MRI, 3100St, Polten, Austria
基金
奥地利科学基金会;
关键词
Deuterium metabolic imaging; Quantitative exchange label turnover; Deuterium labeled glucose Clinical 3T; MR spectroscopy; QUANTIFICATION; SPECTROSCOPY; SUPPRESSION; GLUTAMATE; WATER; 3T;
D O I
10.1016/j.neuroimage.2023.120250
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction: Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6 & PRIME; -2H2]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2 H MRSI (DMI) and 1 H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate +glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. Methods: Five volunteers (4 m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8 g/kg oral [6,6 & PRIME; -2H2]-glucose administration using time-resolved 3D 2 H FID-MRSI with elliptical phase encod-ing at 7T and 3D 1 H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. Results: One hour after oral tracer administration regionally averaged deuterium labeled Glx4 concentrations and the dynamics were not significantly different over all participants between 7T 2 H DMI and 3T 1 H QELT data for GM (1.29 & PLUSMN; 0.15 vs. 1.38 & PLUSMN; 0.26 mM, p = 0.65 & 21 & PLUSMN; 3 vs. 26 & PLUSMN; 3 & mu;M/min, p = 0.22) and WM (1.10 & PLUSMN; 0.13 vs. 0.91 & PLUSMN; 0.24 mM, p = 0.34 & 19 & PLUSMN; 2 vs. 17 & PLUSMN; 3 & mu;M/min, p = 0.48). Also, the observed time constants of dynamic Glc6 data in GM (24 & PLUSMN; 14 vs. 19 & PLUSMN; 7 min, p = 0.65) and WM (28 & PLUSMN; 19 vs. 18 & PLUSMN; 9 min, p = 0.43) dominated regions showed no significant differences. Between individual 2 H and 1 H data points a weak to moderate negative correlation was observed for Glx4 concentrations in GM ( r = -0.52, p < 0.001), and WM ( r = -0.3, p < 0.001) dominated regions, while a strong negative correlation was observed for Glc6 data GM ( r = -0.61, p < 0.001) and WM ( r = -0.70, p < 0.001). Conclusion: This study demonstrates that indirect detection of deuterium labeled compounds using 1 H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2 H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] 3D localized in vivo H-1 spectroscopy of human brain by using a hybrid of 1D-Hadamard with 2D chemical shift imaging
    Gonen, O
    AriasMendoza, F
    Goelman, G
    MAGNETIC RESONANCE IN MEDICINE, 1997, 37 (05) : 644 - 650
  • [32] Improved motion-sensitized driven-equilibrium preparation for 3D turbo spin echo T1 weighted imaging after gadolinium administration for the detection of brain metastases on 3T MRI
    Lee, Sangjoon
    Park, Dong Woo
    Lee, Ji Young
    Lee, Young-Jun
    Kim, Taeyoon
    BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1063):
  • [33] Accelerated 3D whole-brain T1, T2, and proton density mapping: feasibility for clinical glioma MR imaging
    Carolin M. Pirkl
    Laura Nunez-Gonzalez
    Florian Kofler
    Sebastian Endt
    Lioba Grundl
    Mohammad Golbabaee
    Pedro A. Gómez
    Matteo Cencini
    Guido Buonincontri
    Rolf F. Schulte
    Marion Smits
    Benedikt Wiestler
    Bjoern H. Menze
    Marion I. Menzel
    Juan A. Hernandez-Tamames
    Neuroradiology, 2021, 63 : 1831 - 1851
  • [34] Accelerated 3D whole-brain T1, T2, and proton density mapping: feasibility for clinical glioma MR imaging
    Pirkl, Carolin M.
    Nunez-Gonzalez, Laura
    Kofler, Florian
    Endt, Sebastian
    Grundl, Lioba
    Golbabaee, Mohammad
    Gomez, Pedro A.
    Cencini, Matteo
    Buonincontri, Guido
    Schulte, Rolf F.
    Smits, Marion
    Wiestler, Benedikt
    Menze, Bjoern H.
    Menzel, Marion I.
    Hernandez-Tamames, Juan A.
    NEURORADIOLOGY, 2021, 63 (11) : 1831 - 1851
  • [35] 3D localized lactate detection in muscle tissue using double-quantum filtered 1H MRS with adiabatic refocusing pulses at 7 T
    Niess, Fabian
    Roat, Sigrun
    Bogner, Wolfgang
    Krssak, Martin
    Kemp, Graham J.
    Schmid, Albrecht, I
    Trattnig, Siegfried
    Moser, Ewald
    Zaitsev, Maxim
    Meyerspeer, Martin
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (03) : 1174 - 1183
  • [36] Simultaneous proton density, T1, T2, and flip-angle mapping of the brain at 7 T using multiparametric 3D SSFP imaging and parallel-transmission universal pulses
    Leroi, Lisa
    Gras, Vincent
    Boulant, Nicolas
    Ripart, Mathilde
    Poirion, Emilie
    Santin, Mathieu D.
    Valabregue, Romain
    Mauconduit, Franck
    Hertz-Pannier, Lucie
    Le Bihan, Denis
    de Rochefort, Ludovic
    Vignaud, Alexandre
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (06) : 3286 - 3299
  • [37] 3D 31P MR spectroscopic imaging of the human brain at 3 T with a 31P receive array: An assessment of 1H decoupling, T1 relaxation times, 1H-31P nuclear Overhauser effects and NAD+
    Peeters, Tom H.
    van Uden, Mark J.
    Rijpma, Anne
    Scheenen, Tom W. J.
    Heerschap, Arend
    NMR IN BIOMEDICINE, 2021, 34 (05)
  • [38] B1 and T1 Insensitive Water and Lipid Suppression Using Optimized Multiple Frequency-Selective Preparation Pulses for Whole-Brain 1H Spectroscopic Imaging at 3T
    Gu, Meng
    Spielman, Daniel M.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (02) : 462 - 466
  • [39] Short-TE localised 1H MRS of the human brain at 3T:: quantification of the metabolite signals using two approaches to account for macromolecular signal contributions
    Gottschalk, Michael
    Lamalle, Laurent
    Segebarth, Christoph
    NMR IN BIOMEDICINE, 2008, 21 (05) : 507 - 517
  • [40] 2D 1H sLASER Long-TE and 3D 31P Chemical Shift Imaging at 3 T for Monitoring Fasting-Induced Changes in Brain Tumor Tissue
    Alcicek, Seyma
    Dive, Iris
    Thomas, Dennis C.
    Prinz, Vincent
    Forster, Marie-Therese
    Czabanka, Marcus
    Weber, Katharina J.
    Steinbach, Joachim P.
    Ronellenfitsch, Michael W.
    Hattingen, Elke
    Pilatus, Ulrich
    Wenger, Katharina J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2025, 61 (01) : 426 - 438