Trajectory-User Linking via Hierarchical Spatio-Temporal Attention Networks

被引:2
|
作者
Chen, Wei [1 ,3 ]
Huang, Chao [2 ]
Yu, Yanwei [1 ,3 ]
Jiang, Yongguo [1 ,3 ]
Dong, Junyu [1 ,3 ]
机构
[1] Ocean Univ China, Qingdao, Peoples R China
[2] Univ Hong Kong, Pokfulam, Hong Kong, Peoples R China
[3] Univ China, Songling RD 238, Qingdao 266100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory-user linking; attention neural networks; trajectory representation learning; spatio-temporal data;
D O I
10.1145/3635718
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trajectory-User Linking (TUL) is crucial for human mobility modeling by linking different trajectories to users with the exploration of complex mobility patterns. Existing works mainly rely on the recurrent neural framework to encode the temporal dependencies in trajectories, have fall short in capturing spatial-temporal global context for TUL prediction. To fill this gap, this work presents a new hierarchical spatio-temporal attention neural network, called AttnTUL, to jointly encode the local trajectory transitional patterns and global spatial dependencies for TUL. Specifically, our first model component is built over the graph neural architecture to preserve the local and global context and enhance the representation paradigm of geographical regions and user trajectories. Additionally, a hierarchically structured attention network is designed to simultaneously encode the intra-trajectory and inter-trajectory dependencies, with the integration of the temporal attention mechanism and global elastic attentional encoder. Extensive experiments demonstrate the superiority of our AttnTUL method as compared to state-of-the-art baselines on various trajectory datasets. The source code of our model is available at https://github.com/Onedean/AttnTUL.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] TULAM: trajectory-user linking via attention mechanism
    Hao Li
    Shuyu Cao
    Yaqing Chen
    Min Zhang
    Dengguo Feng
    Science China Information Sciences, 2024, 67
  • [2] TULAM:trajectory-user linking via attention mechanism
    Hao LI
    Shuyu CAO
    Yaqing CHEN
    Min ZHANG
    Dengguo FENG
    Science China(Information Sciences), 2024, 67 (01) : 51 - 68
  • [3] TULAM: trajectory-user linking via attention mechanism
    Li, Hao
    Cao, Shuyu
    Chen, Yaqing
    Zhang, Min
    Feng, Dengguo
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (01)
  • [4] Trajectory-User Linking via Trajectory Convolution
    Luo, Xucheng
    Wu, Yan
    Wu, Jin
    Zhou, Fan
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 2858 - 2863
  • [5] Trajectory-user linking via supervised encoding
    Chengrui Hu
    Zheng Li
    Siyuan Wu
    Bowen Shu
    Min Zhang
    Hao Li
    Security and Safety, 2025, 4 (01) : 10 - 27
  • [6] Trajectory-User Linking via Variational AutoEncoder
    Zhou, Fan
    Gao, Qiang
    Trajcevski, Goce
    Zhang, Kunpeng
    Zhong, Ting
    Zhang, Fengli
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3212 - 3218
  • [7] Trajectory-User Linking via Multi-Scale Graph Attention Network
    Li, Yujie
    Sun, Tao
    Shao, Zezhi
    Zhen, Yiqiang
    Xu, Yongjun
    Wang, Fei
    PATTERN RECOGNITION, 2025, 158
  • [8] Video Question Answering via Hierarchical Spatio-Temporal Attention Networks
    Zhao, Zhou
    Yang, Qifan
    Cai, Deng
    He, Xiaofei
    Zhuang, Yueting
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3518 - 3524
  • [9] Trajectory-User Link with Attention Recurrent Networks
    Sun, Tao
    Xu, Yongjun
    Wang, Fei
    Wu, Lin
    Qian, Tangwen
    Shao, Zezhi
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4589 - 4596
  • [10] HSTA: A Hierarchical Spatio-Temporal Attention Model for Trajectory Prediction
    Wu, Ya
    Chen, Guang
    Li, Zhijun
    Zhang, Lijun
    Xiong, Lu
    Liu, Zhengfa
    Knoll, Alois
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (11) : 11295 - 11307