Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data

被引:7
|
作者
Kladny, Klaus -Rudolf [1 ,3 ]
Milanta, Marco [1 ]
Mraz, Oto [1 ]
Hufkens, Koen [2 ,4 ,5 ,6 ]
Stocker, Benjamin D. [2 ,4 ,5 ,6 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Environm Syst Sci, CH-8092 Zurich, Switzerland
[3] Max Planck Inst Intelligent Syst, D-72076 Tubingen, Germany
[4] Swiss Fed Inst Forest, Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland
[5] Univ Bern, Inst Geog, CH-3012 Bern, Switzerland
[6] Oeschger Ctr Climate Change Resarch, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Drought impact forecasting; Sentinel-2; EarthNet2021; ConvLSTM; NDVI; PRIMARY PRODUCTIVITY; GREENNESS;
D O I
10.1016/j.ecoinf.2024.102474
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The advent of abundant Earth observation data enables the development of novel predictive methods for forecasting climate impacts on the state and health of terrestrial ecosystems. Here, we predict the spatial and temporal variations of land surface reflectance and vegetation greenness, measuring the density of green vegetation and active foliage area, conditioned on current and past weather and the local topography. We train two alternative recurrent deep learning models that combine Long Short -Term Memory cells with convolutional layers (ConvLSTM) for forecasting the spatially resolved deviation of surface reflectance across a heterogeneous landscape from a specified initial state. Using data from diverse ecosystems and land cover types across Europe and following a standardized model evaluation framework (EarthNet2021 Challenge), our results indicate increased performance in predicting surface greenness during extreme drought events of the models presented here, compared to currently published benchmarks. This demonstrates how deep learning methods for optical Earth observation time series enable an early -warning of vegetation responses to the impacts of climatic extreme events, such as the drought -related loss of green foliage.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Clustering-enhanced stock price prediction using deep learning
    Li, Man
    Zhu, Ye
    Shen, Yuxin
    Angelova, Maia
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (01): : 207 - 232
  • [42] Development of a Long-Range Hydrological Drought Prediction Framework Using Deep Learning
    Mohd Imran Khan
    Rajib Maity
    Water Resources Management, 2024, 38 : 1497 - 1509
  • [43] Assessment and prediction of meteorological drought using machine learning algorithms and climate data
    En-Nagre, Khalid
    Aqnouy, Mourad
    Ouarka, Ayoub
    Naqvi, Syed Ali Asad
    Bouizrou, Ismail
    El Messari, Jamal Eddine Stitou
    Tariq, Aqil
    Soufan, Walid
    Li, Wenzhao
    El-Askary, Hesham
    CLIMATE RISK MANAGEMENT, 2024, 45
  • [44] Development of a Long-Range Hydrological Drought Prediction Framework Using Deep Learning
    Khan, Mohd Imran
    Maity, Rajib
    WATER RESOURCES MANAGEMENT, 2024, 38 (04) : 1497 - 1509
  • [45] Deep Learning Applied to Vegetation Identification and Removal Using Multidimensional Aerial Data
    Pinto, Milena F.
    Melo, Aurelio G.
    Honorio, Leonardo M.
    Marcato, Andre L. M.
    Conceicao, Andre G. S.
    Timotheo, Amanda O.
    SENSORS, 2020, 20 (21) : 1 - 18
  • [46] Deep learning applied to vegetation identification and removal using multidimensional aerial data
    Honório, Leonardo M. (leonardo.honorio@ufjf.edu.br), 1600, MDPI AG (20):
  • [47] Ambiguous Agricultural Drought: Characterising Soil Moisture and Vegetation Droughts in Europe from Earth Observation
    van Hateren, Theresa C.
    Chini, Marco
    Matgen, Patrick
    Teuling, Adriaan J.
    REMOTE SENSING, 2021, 13 (10)
  • [48] Orbit determination and prediction for low earth satellites using a single pass of observation data
    Alfriend, Kyle T.
    Sabol, Chris
    Tombasco, Jill
    SPACE FLIGHT MECHANICS 2007, VOL 127, PTS 1 AND 2, 2007, 127 : 361 - +
  • [49] Poverty rate prediction using multi-modal survey and earth observation data
    Fobi, Simone
    Cardona, Manuel
    Collins, Elliott
    Robinson, Caleb
    Ortiz, Anthony
    Sederholm, Tina
    PROCEEDINGS OF THE ACM SIGCAS/SIGCHI CONFERENCE ON COMPUTING AND SUSTAINABLE SOCIETIES 2023,COMPASS 2023, 2023, : 23 - 29
  • [50] Detection and attribution of large spatiotemporal extreme events in Earth observation data
    Zscheischler, Jakob
    Mahecha, Miguel D.
    Harmeling, Stefan
    Reichstein, Markus
    ECOLOGICAL INFORMATICS, 2013, 15 : 66 - 73