Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data

被引:7
|
作者
Kladny, Klaus -Rudolf [1 ,3 ]
Milanta, Marco [1 ]
Mraz, Oto [1 ]
Hufkens, Koen [2 ,4 ,5 ,6 ]
Stocker, Benjamin D. [2 ,4 ,5 ,6 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Environm Syst Sci, CH-8092 Zurich, Switzerland
[3] Max Planck Inst Intelligent Syst, D-72076 Tubingen, Germany
[4] Swiss Fed Inst Forest, Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland
[5] Univ Bern, Inst Geog, CH-3012 Bern, Switzerland
[6] Oeschger Ctr Climate Change Resarch, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Drought impact forecasting; Sentinel-2; EarthNet2021; ConvLSTM; NDVI; PRIMARY PRODUCTIVITY; GREENNESS;
D O I
10.1016/j.ecoinf.2024.102474
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The advent of abundant Earth observation data enables the development of novel predictive methods for forecasting climate impacts on the state and health of terrestrial ecosystems. Here, we predict the spatial and temporal variations of land surface reflectance and vegetation greenness, measuring the density of green vegetation and active foliage area, conditioned on current and past weather and the local topography. We train two alternative recurrent deep learning models that combine Long Short -Term Memory cells with convolutional layers (ConvLSTM) for forecasting the spatially resolved deviation of surface reflectance across a heterogeneous landscape from a specified initial state. Using data from diverse ecosystems and land cover types across Europe and following a standardized model evaluation framework (EarthNet2021 Challenge), our results indicate increased performance in predicting surface greenness during extreme drought events of the models presented here, compared to currently published benchmarks. This demonstrates how deep learning methods for optical Earth observation time series enable an early -warning of vegetation responses to the impacts of climatic extreme events, such as the drought -related loss of green foliage.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data
    Biass, Sebastien
    Jenkins, Susanna F.
    Aeberhard, William H.
    Delmelle, Pierre
    Wilson, Thomas
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (09) : 2829 - 2855
  • [22] Assessment of Drought Using Earth Observation Data and Cloud Computing in Morocco for 2010-2020
    Laachrate, Hibatoullah
    Fadil, Abdelhamid
    INTERNATIONAL JOURNAL OF APPLIED GEOSPATIAL RESEARCH, 2022, 13 (01)
  • [23] Deep Learning Approaches to Earth Observation Change Detection
    Di Pilato, Antonio
    Taggio, Nicolo
    Pompili, Alexis
    Iacobellis, Michele
    Di Florio, Adriano
    Passarelli, Davide
    Samarelli, Sergio
    REMOTE SENSING, 2021, 13 (20)
  • [24] Prediction of temperature distribution in a furnace using the incremental deep extreme learning machine
    Lv, Manli
    Zhao, Jianping
    Cao, Shengxian
    Shen, Tao
    Tang, Zhenhao
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [25] Prediction of temperature distribution in a furnace using the incremental deep extreme learning machine
    Lv M.
    Zhao J.
    Cao S.
    Shen T.
    Tang Z.
    PeerJ Computer Science, 2023, 9
  • [26] Determining the response of riparian vegetation and river morphology to drought using Google Earth Engine and machine learning
    Chaulagain, Smriti
    Stone, Mark C.
    Morrison, Ryan R.
    Yang, Liping
    Coonrod, Julie
    Villa, Noelani E.
    JOURNAL OF ARID ENVIRONMENTS, 2023, 219
  • [27] Differing ecosystem responses of vegetation cover to extreme drought on the Big Sur coast of California
    Potter, Christopher
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02):
  • [28] Deep Occlusion Framework for Multimodal Earth Observation Data
    Ekim, Burak
    Schmitt, Michael
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [29] Predicting WNV circulation in Italy using earth observation data and extreme gradient boosting model
    Candeloro L.
    Ippoliti C.
    Iapaolo F.
    Monaco F.
    Morelli D.
    Cuccu R.
    Fronte P.
    Calderara S.
    Vincenzi S.
    Porrello A.
    D'Alterio N.
    Calistri P.
    Conte A.
    Candeloro, Luca (l.candeloro@izs.it), 1600, MDPI AG (12):
  • [30] Predicting WNV Circulation in Italy Using Earth Observation Data and Extreme Gradient Boosting Model
    Candeloro, Luca
    Ippoliti, Carla
    Iapaolo, Federica
    Monaco, Federica
    Morelli, Daniela
    Cuccu, Roberto
    Fronte, Pietro
    Calderara, Simone
    Vincenzi, Stefano
    Porrello, Angelo
    D'Alterio, Nicola
    Calistri, Paolo
    Conte, Annamaria
    REMOTE SENSING, 2020, 12 (18)