Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data

被引:7
|
作者
Kladny, Klaus -Rudolf [1 ,3 ]
Milanta, Marco [1 ]
Mraz, Oto [1 ]
Hufkens, Koen [2 ,4 ,5 ,6 ]
Stocker, Benjamin D. [2 ,4 ,5 ,6 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Environm Syst Sci, CH-8092 Zurich, Switzerland
[3] Max Planck Inst Intelligent Syst, D-72076 Tubingen, Germany
[4] Swiss Fed Inst Forest, Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland
[5] Univ Bern, Inst Geog, CH-3012 Bern, Switzerland
[6] Oeschger Ctr Climate Change Resarch, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Drought impact forecasting; Sentinel-2; EarthNet2021; ConvLSTM; NDVI; PRIMARY PRODUCTIVITY; GREENNESS;
D O I
10.1016/j.ecoinf.2024.102474
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The advent of abundant Earth observation data enables the development of novel predictive methods for forecasting climate impacts on the state and health of terrestrial ecosystems. Here, we predict the spatial and temporal variations of land surface reflectance and vegetation greenness, measuring the density of green vegetation and active foliage area, conditioned on current and past weather and the local topography. We train two alternative recurrent deep learning models that combine Long Short -Term Memory cells with convolutional layers (ConvLSTM) for forecasting the spatially resolved deviation of surface reflectance across a heterogeneous landscape from a specified initial state. Using data from diverse ecosystems and land cover types across Europe and following a standardized model evaluation framework (EarthNet2021 Challenge), our results indicate increased performance in predicting surface greenness during extreme drought events of the models presented here, compared to currently published benchmarks. This demonstrates how deep learning methods for optical Earth observation time series enable an early -warning of vegetation responses to the impacts of climatic extreme events, such as the drought -related loss of green foliage.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An evaluation of machine learning and deep learning models for drought prediction using weather data
    Jiang, Weiwei
    Luo, Jiayun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3611 - 3626
  • [2] There Are No Data Like More Data: Datasets for deep learning in Earth observation
    Schmitt, Michael
    Ahmadi, Seyed Ali
    Xu, Yonghao
    Taskin, Gulsen
    Verma, Ujjwal
    Sica, Francescopaolo
    Haensch, Ronny
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2023, 11 (03) : 63 - 97
  • [3] Flood Modeling and Prediction Using Earth Observation Data
    Schumann, Guy
    Giustarini, Laura
    Tarpanelli, Angelica
    Jarihani, Ben
    Martinis, Sandro
    SURVEYS IN GEOPHYSICS, 2023, 44 (05) : 1553 - 1578
  • [4] Flood Modeling and Prediction Using Earth Observation Data
    Guy Schumann
    Laura Giustarini
    Angelica Tarpanelli
    Ben Jarihani
    Sandro Martinis
    Surveys in Geophysics, 2023, 44 : 1553 - 1578
  • [5] Drought Level Prediction Based on Meteorological Data and Deep Learning
    Liu, Jiahua
    Jiang, Weiwei
    Han, Haoyu
    He, Miao
    Gu, Weixi
    2023 20TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING, SECON, 2023,
  • [6] SMARTEARTHTUNISIA: A BENCHMARK FOR MONITORING THE SDGS USING EARTH OBSERVATION DATA AND DEEP LEARNING TECHNIQUES IN TUNISIA
    Balti, Hanen
    Rhif, Manel
    Chouikhi, Farah
    Inoubli, Raja
    Abidi, Azza
    Jarray, Noureddine
    Ben Abbes, Ali
    Farah, Imed Riadh
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7803 - 7806
  • [7] Fusion of statistical and machine learning approaches for time series prediction using earth observation data
    Agrawal K.P.
    Garg S.
    Sharma S.
    Patel P.
    Bhatnagar A.
    Agrawal, K.P. (kpa229@gmail.com), 1600, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (14): : 255 - 266
  • [8] A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data
    Berger, Katja
    Rivera Caicedo, Juan Pablo
    Martino, Luca
    Wocher, Matthias
    Hank, Tobias
    Verrelst, Jochem
    REMOTE SENSING, 2021, 13 (02) : 1 - 23
  • [9] Exploiting Earth Observation Data to Impute Groundwater Level Measurements with an Extreme Learning Machine
    Evans, Steven
    Williams, Gustavious P.
    Jones, Norman L.
    Ames, Daniel P.
    Nelson, E. James
    REMOTE SENSING, 2020, 12 (12)
  • [10] Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks
    Marmanis, Dimitrios
    Datcu, Mihai
    Esch, Thomas
    Stilla, Uwe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (01) : 105 - 109